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AN EVALUATION OF METHODSFOR THE IDENTIFICATION OF
VARIANCE CHANGESIN DEFORMATION ANALYSIS

Hans NEUNER
Geodetic Institute, Leibniz University of Hanover, Germany

Abstract: The present paper deals with methods for the ifigation of variance changes in
recorded time series. The first method uses asttati test with a test value based on the cu-
mulative sums of squares. In the second approaeltdhfiguration of the change-points is
estimated. In order to avoid influences due to gkarof the mean and to separate the differ-
ent spectral components, the time series ared@&sbmposed using a Wavelet-Transform.

1. INTRODUCTION

In modern deformation analysis the deformation esscis described in a system theoretical
approach. The most comprehensive description gt is given by the dynamic model.
Therein the reaction of the monitored object isregped as a function of time and acting
loads. If the functional relationships between ¢hego components that represent the input
and output to the system are set regardless ghigsical structure, the resulting model be-
longs to the class of behaviour models. If the rhddesn’t take the acting loads into account
and describes the system'’s state only as a funofidime, then it is of kinematic type. The
content of this paper refers to these two modebingtegies.

In most cases, when one of the above mentioned Im@&lapplied, the data is available as
time series. The model parameters result from atysis in time or frequency domain. Re-

gardless of the processing strategy, it is usualpfy for a global model which includes the

entire available observations and treats them ferdifitiated. Thus, the statistical homogene-
ity of the analysed data is presumed implicitlyténms of time series analysis it is required
that the observed processes are stationary ug t%brder.

Local effects in processes with varying statistjgadperties - such as changes of variance -
cannot be described by the global approach. Morethvgr occurrence leads to biases in the
estimated parameters and disturbances in the edsiddet it is precisely the expectance of
such changes that often motivates the monitoririyigc Therefore, it is a natural way to
proceed by trying to identify these kinds of chagad by modelling them appropriately.

This paper deals with two methods of automatic tifieation of variance changes in time
series. It is assumed that these changes are pedoguickly compared to the length of the
time series and are followed by a new state ofssizdl equilibrium. This assumption con-
forms to the treatment in dynamic analogy models$ @anpractical reality. Due to their prior
identification one can account for the changes mathtain a reduced order of the model at
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the same time by introducing a new set of suitpbl@ameters for each interval of homogene-
ous variance. Furthermore, as a result of a propasformation of observations to data with
unitary variance, one can obtain system paraméierghe reaction delay which cannot be
accurately calculated in the global approach.

In order to assess the variance homogeneity ofliffierent components that overlay in the
time series (especially the one of the deformattbeye are decomposed in spectral compo-
nents by means of the Wavelet Transform. The ifieation methods are applied in a second
stage at the level of the wavelet coefficients.

The paper is organised as follows: the next secdtibnduces basic concepts of the Wavelet
Transform. The theoretical backgrounds of the idieation methods are given in the third
section. Results obtained by applying them to stitheand real signals are presented in the
last section.

2. THE WAVELET-ANALYSISOF TIME SERIES

The Wavelet Transform offers the possibility toragt and study local characteristics of the
signal at subsequent resolution levels. This cacldre in different ways according to the
purpose of the data decomposition (Percival anddéral2002). If further processing of the
transformed data is needed the Discrete Waveletsioan (DWT) is appropriate.

The DWT is formulated in terms of an orthogonatkfilbank and consists in passing the low
frequent signal component u, separated in a pre\step j, through a quadrature mirror filter
pair and decimating by 2 the components by retgiewery other value:

Ujgn = Z Meon i Vign = Z O 20U (2)
X X

The high- and low-pass filters of the bank, h andrg called wavelet and scaling filter. The
corresponding outputs, v and u, are the wavelesaating coefficients.

To interpret the physical meaning of the coeffitsethat result in the scalg=s2, the recur-
sive filtering can be replaced by single equivaldtdrs. Their transfer functions are derived
from the transfer functions of each applied scating wavelet filter. The pass-band of these
equivalent filters is given by 0 - 172 for the low-pass filtering cascade and'£/21/2 for

the sequential filtering that includes the highgpéker at the level j (Percival and Walden,
2002). Thus the coefficients of th& decomposition level represent the spectral comptsne
of the signal contained in the pass-band of thévatgnt filters.

Because the used filters are of FIR-type signalmmmants with frequencies in the transition

band may occur in the spectrum of the wavelet a@effts of adjacent scales. The separation
between the spectral components is stricter ifctiracteristic equation H(f) = 0 has a root
f = 0.5 of increased order. H denotes herein taester function of the low-pass filter. The

higher the root’s order the better the frequenaalisation is. This increase also leads to an
increase of the filter length which on the othendh&as a negative effect on the aimed local-
isation in time of the variance changes. These sipp@ffects make the selection of a filter

structure necessary that represents a good balmtesen the localising properties in time

and frequency domain, according to the scope ofathalysis. In the present paper the
DauBecHIesilter of the 4" order (Percival and Walden, 2002) seemed to lmod gyade-off.
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The DWT is due to its orthogonality an isometryisTimeans that the energy of the analysed
signal equals the total energy of the coefficigauilting from the transformation:

J
= EHU v, 2)

where | and V stand for the vector of scaling and wavelet cogffits at scale' 2nd J for
the maximal decomposition level.

This property is similar to thedoriErtransform and enables the separate analysis of the
contributions of each scale to the total variafdaus, it is possible to follow the build-up of
the variance in each scale and hence to studyhitwege of variance at a scale-by-scale basis.
The change-points of the variance in each scalebeadentified with one of the approaches
presented in the next section.

3. METHODSFOR THE ASSESSMENT OF VARIANCE HOMOGENEITY

3.1. The variance homogeneity test

There are various statistical approaches availddgieaim the assessment of variance homo-
geneity. However a great amount of these are degifpr the identification of a single vari-
ance change or suffer from the lack of localisingperties. A test procedure that avoids these
disadvantages was introduced glaN and Tao (1994). They investigated the detection of
multiple variance changes in a sequence of N uatadad normally-distributed variables x

with mean 0 and variancq?z(, with k =1, 2, .., N, starting from the formulai of the follow-
ing null and alternative hypothesis:

H,:0; =05=K =0y, ®3)
H,:0’=0.=K =0 #0},,=K =0} (4)

The test value, used to distinguish between the@sehypothesis, is based on the centred cu-
mulative sums of squares (CCSS):

D —&—Lwhereq—zk: X—'z and k 1,X | (5)
“ ¢y N |\ o? B
The ratio between the sums of squares follows a-thstribution if the null hypothesis is
valid. The expected value of this ratio can be wated straightforward from the moment
generating function of the beta-distribution artd fhe term subtracted in (5) from the ratio of
the sums of squares. Thus, the measuredd be interpreted as the deviation of the ratio o
cumulative sums of squares from their expectedevalu

It was proven byNcLAN and Tao (1994) thatvN/2[D, resembles in the asymptotic case

N—o a BROwNian bridge process. For this kind of process usafobability measures have
been obtained byIBLINGSLEY (1999). It can be noticed, that a change of vagaat a certain

location k* leads to an increased value of| |Br k = k* but also for values of k in the
neighbourhood of k*. Therefore it is reasonableckmose majyDy| as an appropriate test
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value for the assessment of the variance homogeoktthe time series. Based on the prob-
ability measures given inIBINGSLEY (1999) one obtains:

ng max | < b} ¥ 3 (- ) & b ©)

For the confidence level of 95% adopted in thisgudpe resulting quantile is b = 1.358.

Performed simulation studies have revealed thatvhiue is usable in practice for time series
with more than 5,000 terms. For shorter lengththefdata series a lower value was obtained.
However, the derivation by simulations of propeagiles that conforms to the length of the
analysed data is of high computational burden. &foee the following closed relation is pro-
posed for the calculation of the quantiles in aafstime series with less than 5,000 terms:

J- ey

a
"+

{ooylals,

1 - N 7
N’ N |2 1 N-j_ j-a V| L{ N _a+Ne1- )] (7)

o X B! T O

=] 2m(N-j) | (a+N+1- )\ ] a+Nw1-j) [iEI N N+1

In (7) [a] is the next lower integer to a, and NN£2. This probability relation was obtained
on the basis of the results iruBBIN (1968) for the K order statistic of N independent vari-
ables of the (0, 1) uniform distribution. This &#¢ is beta-distributed. Thus, the probability
relations derived in DRBIN (1968) are also valid for D The original relation of DRBIN was
adapted using™®RLING’s formula for the approximation of faculty. Thepmpximation series
was interrupted after the first order term. Therefothe relation (7) is only valid for
N <5,000. Nevertheless it is a good complement tar¢kegtion (6). The results obtained for
the 95% quantiles agree up to>With the results of the simulations.

The structures of the test value (5) and the oed usthe KOLMOGOROW-SMIRNOV goodness-
of-fit test are similar. The agreement betweendimpirical distribution function and an as-
sumed theoretical distribution function is assessdtie latter by means of the maximum ab-
solute value of their difference. It was shown ttias difference resembles the&k@wnian
bridge process, in case of compliance. This anatgmns the possibility to build alternative
measures for the assessment of the variance homibgéy using test values of other good-
ness-of-fit tests that evaluate the difference betwthe distribution functions. One of these is
the (RAMER - von MiSES test. It's based on the sum of the squared differe between the
distribution functions. Applying for the mentionadalogy the resulting measure is:

1 0e 135G kY
Egok-zg[% Nj ®

This measure has a global character and doesrsepsdocalising properties. Thus, it can
only signalise the heterogeneous variance of tlaéyaed time series if its estimation exceeds
the quantile of the RAMER — von MsEstest. One aim of the simulations presented irfahe
lowing section is to compare the power of the twespnted measures.

If the test value in (6) or (7) exceeds the cho88r6 quantile, then k* corresponding to
max |0/ is marked as a possible change-point. To checkufther variance change-points
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the samples are divided into subseries.f%] and [%-+1..Xxy] and the procedure is applied
again for each of them. This process is iterated the test value falls below the quantile for
every subset of variables{xxy]. In a further step the previously obtained caatiéd and
their location are validated in an iterative algam (Inclan and Tiao, 1994).

One drawback of the measure (5) is its lack of stiness. This follows from figure 1 which
contains the sensitivity curves SC(x) calculateddpat the points k = N/4, N/2 and 3N/4:
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Figure 1 - Sensitivity curves SC(x) of the meaddyecalculated for k=N/4, N/2 and 3N/4

As can be observed, the measugebBcomes more sensitive to outliers as k approattiges
end of the series. Outliers have a direct impacthentest results as they cause local maxima
of |Dy| at the time of their occurrence. Therefore, tlead to misinterpretation by feigning
variance change. In order to circumvent this falsaeclusion we propose to use the above
testing procedure based of the following modifiedsion of I:

,_C. k K

Dk:—f——where(‘;:Z(ﬁnﬁ) and & LK , 9)
CN N i=1

The introduced weights pccount for the “distance” betweenaxd the adjacent data situated
in a neighbourhood of a certain extension. Theydafemed as follows:

oi if x, —med(x) < c®,

P = (10)

(|X_Tced(xj) if |Xi —med(X)| = Cm)-i

In (10) med(x) denotes the median of the series ®enotes the value of the standard devia-
tion estimated on the basis of the median absaletgation (MAD) in the neighbourhood of
Xi, and ¢ represents a constant between 2.5 andedinfrbduced weighting scheme is similar
to the one proposed byuder in the robust adjustment ofaBss-MARKoOV linear models but
uses the more robust median for the estimatioheobtatistic parameters.

Strictly, the probability relations (6) and (7) are longer valid for the modified CCSS in the
presence of outliers. However, for small ratio@ufiiers to unbiased data the available quan-
tiles proved to be useful further on. This can Bplaned by the much higher benefit ob-



eas\)(\“% 13th FIG Symposium on Deformation Measurement and Analysis
W %QS 4th IAG Symposium on Geodesy for Geotechnical and Structural Engineering
\\
e

e LNEC, LISBON 2008 May 12-15

tained from the mitigation of the influence of éerts on @ compared to the deviation of the
distribution of the modified measure/0rom the assumed beta-distribution.

3.2. Theidentification method based on contr ast functions

The approach of this method is different from thategy presented in 3.1 because it esti-
mates the entire configuration of change-points dime. It was developed byAlIELLE
(1998) and is based on the likelihood function. Bar outline of the method’s theoretical
background we consider a set of N variablesvkh i =1, 2,.., N, which have a density func-
tion f depending on the unknown parametersAt least one of these parameters is changing
K times during the observation period. At first wensider a known number of changes K
and define as primary goal the estimation of tleations of these change-points and of the
parameter® according to a minimising criterion. The minimistohction is called contrast
functiony and the obtained estimators are named minimunrasirgstimators. By expressing
the contrast functiog with respect to the empirical data, one obtaiesetmpirical contrast,.

The minimum contrast estimatér is minimising the empirical contrast.

For density estimation problems the log-likelihdadction | is a proper choice of a contrast
function provided that the density function is éoabus. This condition is satisfied by the
normal density function which is also appropridtéhe changing parameteésrefer to the
meanp and/or the variance® of the observations. The changing parametersacelated as

the ml-estimates from the observatiopd&longing to each homogeneous segment k between
the timest;+1 and ¢. The other parameters are calculated using theeesat x. The configu-
rationt of the changes is then obtained by minimisingetimpirical contrast:

1& A .
Y (T) :WZ‘l (th_l+1v th_l+2’ T th ;ek) - min. (11)
k=1
When the changes affect the variance the log-hkeld function in (10) has the following
structure:

Ny

Z(th,ﬁj _p-)z (12)

52) = N N, |
X 187) = [ I 29 iy

where N is the number of samples in thB komogeneous set. Similar relations can be ob-
tained if the changes affect either the mean dn Btitistical parameters. The minimising of
(11) can be solved only using a combinatorial agpinobecause is not explicitly contained

in the functional model.

In the more practical case when the number K ohgha is unknown the minimisation func-
tion (11) has to be extended with a penalisaticiofathat includes this additional unknown:
1& A .
Yn (T) =NZ_| (X"k—l"l’ Xigrzreer Xy ’ek) + pen(K)— min (13)
k=1
Solving this minimisation problem requires somepknowledge about the maximum num-
ber of change-points . Thus, with a proper choice of the penalisatiazttdaone may ap-
ply the same computation procedure as in the chaeknown number of change-points with
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K =Kmnax The estimation problem is now enhanced by ancaspemodel selection. It is
known from similar model selection problems thatogmimal penalisation factor will com-
pensate for the decrease of the empirical confldstafter attaining a plausible number of
change-points. MssSART (2003) derives two structures for the penalisateom depending on
the selection procedure for the set of change-poimt case of an ordered selection, per-
formed by adding successively one element to thefsaready selected change-points, a lin-
ear penalisation of the forrk[D/N is suggested. Herein is D the number of assumed
change-points and a scale factor. In case of a complete selectierfopmed by analysing
anew all possible locations of an assumed numbehahge-points, a linear-logarithmic pe-

nalisation of the typex [ID[1+Iog(2N/D)] /N is proposed. Both penalisation forms were
implemented for the practical applications disctddsethe 4' section.

4. THE EVALUATION OF THE TWO METHODS FOR THE IDENTIFICATION OF
VARIANCE CHANGES

4.1. The evaluation based on synthetic signals

For the performance assessment of the describedifidation methods numerous analysis
were done using synthetic signals. Within the satiahs the length of the time series, the
location and the magnitude of the variance chamgebleen varied. For every combination of
these parameters 10.000 simulations were performed.

At first, the quantiles of the probability relat®ii6) and (7) as well as for theREMER-von
MisEes test could be confirmed by means of series witmdgeneous variance. A single
change-point was introduced by increasing the wadaof all variables that follow the chosen
location. The increase was of the order of 1.5 and 4 and its location was varied in quar-
ters of the total length. For every combinatiornthef parameters only the correct identification
of just one variance change was marked as sucte$si identification with the variance
homogeneity test described in 3.1 was performedh Wwitth test values derived from the
KOLMOGOROWSMIRNOV and the ®AMER — von MSES goodness-of-fit test. Although in all
tests the successful identification rates wereectbe KOLMOGOROW-SMIRNOV based statistic
led systematically to better results. Therefore, fibllowing results refer exclusively to the
test performed with this measure.

The expected dependency of the successful ideatidic rates on the length of the time series
and on the magnitude of the change could be coedirfar both introduced methods. Figure 2
shows exemplary the successful identification ratetsined with the two methods for time
series of length N=1,000 subjected to the locadiot the magnitude of the change.

One observes that for changes of small magnitudeCtBSS-based method seem to perform
better while for greater changes the method basexbntrast function with the combined lin-
ear-logarithmic penalisation is superior. Thus tihe methods complement each other very
well. The comparison of the two penalisation forawsilable for the contrast-based method
reveals that the linear penalisation leads to bed#tsults exactly in the situations where the
variance homogeneity test leads to the very bestitee Therefore, the method based on con-
trast functions with linear penalisation gets ndtfar attention.
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15| 2 3 4| 15| 2 3 4| 18 2 3 4
B CCSS80.2%92.3%92.3%92.4%190.9%92.6%191.4%90.5%86.1%92.4%91. 7%92.0%
inear |38.5%89.7%94.3%94.5%59.6%93.7%94.5%94.0%44.8%92.1%94.7%94.6%
M lin-log |23.5%82.4%98.6%98.9%44.6%95.4%98.7%98.8%30.0%90.3%98.8%98.8%

Figure 2 - Successful identification rates forsgmvith N = 1.000 samples

Although the main conclusions of the simulatiordgtwere drawn here from the results pre-
sented in figure 2 they are also supported byekealts obtained for time series with N = 500
and 10,000 samples.

Another study performed on synthetic signals aintedssess the robustness of the modified
test value (9). Therefore, the identification pihoee presented in section 3.1 was applied
with both test values (5) and (9). In cases wheemor was introduced to the data the meas-
ures led to identical results. In the presenceutifers the measure (9) performed significantly
better. Whereas the localisation of the varian@ngk improves, the number of rejections of
the null hypothesis (3) remains comparable. Fomgpte, in time series with N = 500 samples
that contains a variance increase of 1.5 in thellaidnd a gross error at the location k* = 375
the test was rejected in all simulations when ugliregmeasure (5) and in 89 % of cases when
using the measure (9). However, while the initedttlocates the change correctly only in
65 % of the simulations the modified test lead81¢% successful identifications. In cases of
strongly biased data it is therefore advisablepilyafor the modified test value (9) when the
variance homogeneity test is used.

The gained cognitions about the performance ofintreduced methods are further used to
assess the identification results of real recormdige and to understand possible differences
between the identification results.

4.2. An evaluation based on recorded time series

The analysed time series represents deformatiotieedbwer of a wind energy turbine occur-
ring due to operating and wind loads. For reasoestioned in the ¥ section the signal was
first transformed using the DWT. In the transforimatup to the il decomposition level all
spectral components of the time series were pregeonto the wavelet coefficients. A main
purpose of this monitoring was the modelling of twenponents corresponding to the first
eigenfrequency of the tower. Therefore, the follogvresults are focused on the coefficients
of the 3% and &' decomposition level which contains the eigenfregye This spectral com-
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ponent overlaps the rotation frequency of the tetlin the coefficient series of th& fevel
and the blade frequency in the coefficients of3fidevel.

The identification results obtained for the waveleefficients of the % decomposition level
with the two discussed methods are presented ifotlesving figure:
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Figure 3 - Variance changes identified in the seoied” level wavelet coefficients. Top: re-
sults of the variance homogeneity test. Bottomultef the contrast-based method.

As can be observed the number of changes andabkaiions agree very well. Solely one fur-
ther change-point situated nearly 8000 was ideativith the contrast-based method. Its exis-
tence is justified because a similar change wattifited in series of the coefficients of thé 3
level. The lower sensitivity of the test in thisusition is caused by the masking effect due to
the high energy segment situated just before tigeatified location. This segment is longer
than the lower energy interval. The same effeciccte observed in the study of synthetic
signals. One notice from figure 2 that the ideadifion rates of a change occurring at the loca-
tion 3N/4 are systematically higher than the ratetsined when the change is located at N/4.

The good agreement between the results obtainddthet two identification methods could
be confirmed for the wavelet coefficients of tH&18vel only for the section starting at 5400
(s. figure 4). Up to this location the number aéntified change-points and their correspond-
ing locations are quite different. The main causetliis disagreement is the increased value
of the coefficients around the locations 2000. Asassed in the3section the CCSS-based
test is very sensitive to increased values of sirsgimples (s. figure 1). These have only a
logarithmic contribution to the contrast function @n be noticed from (12). In a straightfor-
ward approach one can use the variance homogetesityith the modified test value (9).
The obtained results are marked in figure 4 witmegrlines. The identical change-points are
marked with half-lines. Thus, an equal number @frgfe-points could be obtained. Neverthe-
less the difference between the locations of tret ihange-point is still significant and its
explanation needs further research.

Some of the identified segments with homogeneotamnee correspond to the structure’s re-
action to changes of the operating states. Thsfitst, the fourth and the eighth change-
point occur due to changes of the azimuth of theelt& or to changes of the pitch. The
change-points following the abovementioned onexkrtieg end of the transition between two
equilibrium states. The remaining change-pointscatesed by variations of the wind load.
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Figure 4 - Variance changes identified in the seoie3® level wavelet coefficients. Top: re-
sults of the variance homogeneity test (red) andifieal variance homogeneity test (green).
Bottom: results of the contrast-based method

Relating the sudden changes of the acting loadset@eformations from the segments with
homogeneous variance corresponding to the transigmables the derivation of specific pa-
rameters that characterise i.e. the structureffhaeis. Therefore, the proposed approach is
consistent with the objectives of modern defornmmatimalysis discussed in thé& gection.
Moreover, the improvement obtained by accountingtiie identified variance changes in a
kinematic modelling of the deformation signal enames further research on the presented
topic. Future activities will deal especially withe assessment and improvement of the ro-
bustness of the presented identification methods.
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