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SUMMARY  
 
The Land Administration Domain Model (ISO 19152) (ISO-TC211 2012) defines a specific 
geometry form which allows the clean and simple mixing of 3D cadastral objects such as 
volumetric parcels with the more common 2D parcels. It does this by introducing a concept of 
boundary surfaces, known as “face strings”. The unbounded nature in the vertical direction of 
the “face strings” corresponds to the unbounded nature of 2D parcels, that is, they comprise 
the boundaries of infinite 3D columns of space (see ISO-TC211 2012 Figure B.2 Page 48). 
This, in combination with the more usual finite “face” used to define a completely bounded 
3D parcel, allows a highly efficient storage structure, without sacrificing the rigour of the 
definitions (while remaining compatible with the vast amount of existing 2D cadastral data).  
 
A set of axioms has been developed that can be used for formalizing the validation of 
individual completely bounded 3D cadastral parcels in general, or for formalizing the 
validation of a set forming a complete coverage of completely bounded 3D parcels 
(Thompson and van Oosterom 2011; Thompson and van Oosterom 2012). This paper extends 
this set of geometric validity axioms specifically to the LADM, ensuring that the individual 
parcels can be correctly validated, whether they be: 1. defined by 2D primitives (the “face 
strings”, representing unbounded 3D columns), 2. defined by 3D primitives (“faces”, 
representing bounded 3D spaces), or 3. defined by a combination of the two (see ISO-TC211 
2012 Figure B.4 Page 49). It will also be ensured that the “outside of the world” is correctly 
handled. That is to say, where cadastral parcels abut the outer limit of the jurisdictional region. 
Further, the validity of the remaining top and bottom parts of the columns of the volume of 
interest (after “extracting” completely bounded 3D parcels) is explored. These parts also 
correspond to partially bounded 3D parcels. Finally, the validity of “liminal” parcels (2D 
parcels which abut 3D parcels) is addressed.  
 
The other major aspect considered is that the LADM defines several levels of encoding – 
from the purely textural definition of parcels through point-based parcels, line based parcels 
and polygon based parcels to the full topological encoding of a parcel coverage. Not all of 
these are equally suitable for geometric validation, but those that are are identified, and the 
appropriate axioms and necessary extensions are identified. The axioms have to be 
‘translated’ and applied at the appropriate encoding level. It should be noted that axioms use 
concepts that typically belong to (or best fit) a certain encoding level; e.g. using topology 
concepts such as node and edge. 
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1. INTRODUCTION 
 
In the move towards a 3D Cadastre, many jurisdictions are considering a hybrid 2D/3D 
database as either a stage of development or as a target in itself (van Oosterom, Stoter, 
Ploeger, Thompson and Karki 2011). The Land Administration Domain Model (LADM), 
which is the underlying model for the ISO 19152 standard assists in this approach by defining 
a data structure which allows a relatively seamless mixing of 2D and 3D “spatial units” 
(Lemmen, Van Oosterom, Thompson, Hespanha and Uitermark 2010). This standard is in its 
final stages of approval (Lemmen, Uitermark and van Oosterom 2012). 
 
For the purpose of this paper, there is no important distinction to be made between “parcels” 
“lots” or “spatial units”, since it is only the spatial aspects (topology and geometry) that are 
being considered, so the term “parcel” will be used to mean the extent of land or space being 
considered. 
 
1.1 The Validation of Plans of Survey 
It is or should be common practice that data to be included in a database be validated. 
Typically this is to ensure that the incoming data is compatible with the database design 
assumptions. For example, if an attribute of “length” is being entered, it may well be validated 
to ensure that it is numeric, and within a specified value range (e.g. value > 0). This does not, 
of course, ensure that the value is correct, but may catch some errors. 
 
By contrast, many jurisdictions specify a document (paper or computer file) which is used to 
define the spatial extents of a cadastral object. For example, a traditional “survey plan” may 
show the extents of a property, along with enough supporting information to be sure that the 
property can be legally identified. This frequently is separate from the “Title” or other 
document that defines the rights that certain parties have to the property. The same happens in 
the 3D world, where a property’s geometry may be defined in terms of its “metes and bounds”. 
It is important that a survey plan document can be validated to ensure it can define the extents 
of a cadastral object in an unambiguous way that can stand up to legal scrutiny. For example, 
it must be possible to determine rigorously what subset of space is “within” the cadastral 
parcel – and therefore who has rights to it. 
 
The significant difference in this case is that there may not even be a database that is being 
loaded with the parcel definitions. For example, in Australia cadastral databases (DCDBs) are 
limited to 2 spatial dimensions, while many cadastral parcels and plans are 3D.  
 
Historically, the paper plans of survey were inspected by officers in the registering authority, 
but with the rising complexity of subdivision, and in particular with the definition of 3D 
parcels, the manual “validation” proved to be too time consuming and error prone (especially 
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for more complex configurations). Thus it is necessary to develop an automatic validation 
suite to ensure that the standard of survey information is sufficient to the task. It could be 
argued that the fact that there is no 3D cadastral database behind the validation actually makes 
the task more difficult. Checking an individual 3D object may be feasible, but it is may be 
more difficult to check a new 3D object in relation to existing 2D and 3D objects for potential 
unwanted overlaps or gaps. 
 
1.2 3D Geometric Validation 
Much work has been done on the validation of 3D objects, but it has almost invariably been 
aligned towards the entry of data to a database. For example Kazar, Kothuri, van Oosterom 
and Ravada (2008) is designed to control the entry of objects to an Oracle database. While it 
may be acceptable as a database geometry structure, it would not be reasonable to insist that a 
survey plan have “construction lines” included to ensure that faces can be defined as “simple 
polygons” just because Oracle allows no inner rings in faces. Many approaches to 3D 
geometry also draw on the concept that the boundary of a 3D region should be a 2D manifold 
(Gröger and Plümer 2011), but while this makes the definition and processing (validation) 
simpler, it is also a rather arbitrary rule to enforce on a cadastral plan (Thompson and van 
Oosterom 2012).   
 
There are many structures proposed for the storage, manipulation and retrieval of 3D 
geometric objects in terms of boundary representations (b-rep) (Ledoux and Gold 2007; 
Boguslawski and Gold 2009), including non-manifold objects (De Floriani and Hui 2003). 
 
The concept of “2.8D” geometry was introduced by Gröger and Plümer (2005) as an 
extension of the planar polygon coverage, to include a third dimension, and to allow 
overhangs, and finally “handles” (such as bridges and tunnels). This resulted in a rigorous set 
of axioms (Gröger and Plümer 2011) that allow a well defined set of validation rules to be 
written, and finally a set of transactions that allow update while ensuring validity is 
maintained (Gröger and Plümer 2012); see Figure 1B. This work has formed a starting point 
for the set of axioms presented here, with restatement as needed to accommodate: 

• Non-manifold boundaries of cadastral parcels 
• The mixture of 2D and 3D parcels found in a cadastre (viz LADM). 
• The requirement to validate 2D and 3D parcels together. 
• The fact of non-exact mathematical representation. 

 
Belussi, Liguori, Marca, Migliorini, Negri, Pelagatti and Visentini (2011) take a different, but 
compatible approach to the validation of (possibly 3D) datasets, using a schema defined in 
UML (Unified Modelling Language) and OCL (Object Constraint Language), and known as 
GeoUML. They approach the issue of non-exact number representation and arithmetic using a 
requirement similar to that of Milenkovic (1988), that a buffer of at least ten times the 
“internal resolution” must be provided between distinct geometric objects. Parcel definitions 
could be extended to a full 3D coverage of the region, defining arbitrary symbolic “Top” and 
“Bottom” planes to encompass all the 3D parcels, and redefining 2D parcels to extend 
vertically to these planes (Figure 1C), but this is wasteful of storage. 
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1.3 Plans in 2 and 3 Dimensions 
It might be possible to cover the mixture of 2D and 3D parcels commonly found in a practical 
cadastre using a non-manifold representation such as that of De Floriani and Hui (2003) (see 
Figure 1A) which allows a mixture of 3D, 2D, 1D and 0D primitives to be used to define 
geometric objects. It might be thought that a subset of this (3D and 2D only) could be used, 
and this would be the case if the aim were just to develop a database structure to store 
cadastre. The problem domain we are considering here is the validation of plan information 
(with description of extend of spatial objects), which requires more rigour in some respects 
(Belussi et al. 2011), but conversely cannot impose arbitrary restrictions.  

 

B A 
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3D parcel 

Neighbouring 
2D parcel 

Path across 
2.8D surface 

Apartment 1 
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Figure 1. Three possible representations of a complex with three apartments (based on Stoter and van 
Oosterom 2006 Page 41), however in this example it is assumed that the neighbouring parcels are 2D: A. 
represented as a non-manifold complex (with the 2D parts in colour). B. Represented as a 2.8D map. (The 
grey surface is not stored, while the coloured surfaces are used twice and the white surfaces are used once. 
A path across the surfaces is shown in coloured arrows). C. Represented as a full 3D coverage, with 
arbitrary symbolic top and bottom surfaces. Neighbouring parcels are converted to 3D parcels. 
 
The technique suggested by the LADM is ideally suited to this mixture of 2D and 3D 
representation of parcels. 2D parcels typically account for the vast majority of the land surface, 
and can be individually quite large and complex, or in many cases may be simple rectangles. 
3D parcels on the other hand are usually much fewer in number, are relatively simple in terms 
of number of vertices (compared to the total number of vertices in the DCDB), but high in 
monetary value. The LADM approach allows the 2D parcels to be represented as simple 
“GM_Curve” objects (Lemmen et al. 2010), but to be thought of as 3D prisms of space with 
no defined top or bottom: open columns. This makes for a smooth transition between 2D and 
3D areas of subdivision. For example, using the polygon encoded form, the apartments and 
their 2D neighbour would be encoded as in Figure 2. All that needs to be stored for the 2D 
parcel is a single 2D gm-curve. A point p = (x,y,z) in space is to be considered to be within the 
2D parcel if the point p’ = (x,y,0) is within the gm-curve. That is to say, even though a 2D 
object is stored, it represents a 3D region of space. 3D parcels are represented using a fairly 
conventional b-rep, but, as described below, with an extension to allow spaces to be partially 
unbounded above and/or below. Note that in Figure 2, the apartments are fully bounded, but 
the common property is unbounded above and below. 
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Figure 2. The same three apartments represented in LADM polygon encoded form. The faces that adjoin 
the 2D neighbouring parcel are highlighted (blue for apartment 1, green for apartment 2, grey for the 
common property). The light grey surface represents a face string between two 2D parcels. 

There is an additional complexity where topological encoding is being used (as allowed by 
the LADM). In this case, a face of a 3D parcel must always be matched with an anti-equal 
face of an adjoining parcel. In Figure 2, this means that the 2D neighbour must be defined 
with faces to match apartments 1 and 2, and therefore cannot be built from GM_curves alone. 
This case  of a 2D parcel that must be defined by a mixture of faces and face strings is known 
as a “liminal” parcel representation. This will be discussed in detail later. 
 
This paper further defines the mathematical consequences of this mixture of representations. 
First in section 2 the relevant concepts are defined. Next a set of geometric validation axioms 
are presented in section 3, that take the consequences of mixing 2D and 3D representations 
into account. Section 4 treats in more detail the concept of connectivity, while section 5 
addresses the concept of a space partition in the context of topology based spatial units. 
Finally, conclusions and future work are described in section 6. 
  
2. DEFINITIONS 
 
Because the LADM defines the concept of parcels which are unbounded above or below (or 
both), we need to extend the concept of “point” to include points of unspecified Z value – 
points at “infinity”. 
 
2.1 Points and Nodes 
We define the concept of infinity in this approach as a particular bit pattern which behaves in 
a way analogous the mathematical concept of infinity. It may already be available in a 
particular computer language or number encoding – e.g. the IEEE floating point infinity 
(Goldberg 1991), or the implementer may choose a particular number (e.g. 231-1 =  
2147483647). For real points with coordinates x, y, z ∈ R The critical behavior is: 

∀x ∈ R ⇒ x < ∞. 
∀x ∈ R ⇒ x > -∞. 

We now define P to be R ∪ {-∞, ∞}, and P3 as {(x,y,z): x,y ∈ R, z ∈ P}. 
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2.2 Distances 
For p1 = (x1,y1,z1), p2 = (x2,y2,z2) ∈ P3,   
if z1 ≠ ±∞ and z2 ≠ ±∞  

D(p1, p2) =def 2
21

2
21

2
21 )()()( zzyyxx −+−+−  . (D1) 

if z1 = ±∞, 
D(p1, p2) =def 2

21
2

21 )()( yyxx −+−  if z2 = z1 (D2) 
D(p1, p2) = ∞ otherwise.  

if z2 = ±∞, 
D(p1, p2) =def 2

21
2

21 )()( yyxx −+−  if z2 = z1 (D3) 
D(p1, p2) = ∞ otherwise.  

Corollary D(p1, p2) = D(p2, p1) (C1) 
Point equality: 

p1 = p2 =def x1=x2 ∧ y1=y2 ∧ z1=z2 (D4) 
Corollary p1 = p2 ⇒ D(p1, p2) = 0; (C2) 
In what follows, where the context is clear, the definitions of variables are omitted. For 
example, if p1 represents a point, the definition p1 ∈ P3 will be omitted. 
 
A node n ∈  P3 is a special case of point, which can be represented in the number system of 
the computer (for example as a tuple of floating point numbers). 
 
A node at infinity is a node with coordinates (x,y,z) where z = +∞ or z = -∞. 
 
Let N be the set of all possible nodes, N ⊂ P3.  Note that N is a finite set, P3 is uncountably 
infinite. 
Directed Edges 
A directed-edge e is a straight line segment between a pair of nodes: e = (n1, n2):  
Let E be the set of all possible directed-edges. 

 

e1 
e2 

n1 

n2 m1 

m2 

 
Figure 3 Anti-equal directed edges e1  

e2 

For directed edges e1 = (n1, n2), e2 = (m1, m2) ∈ E,  
e1  

e2 =def  n1 = m1 ∧ n2 = m2  (equal edges) (D5) 
e1  

e2 =def  n1 = m2 ∧ n2 = m1  (anti-equal - see Figure 3) (D6) 
The notation is used that n ∈ e means if e = (n1, n2) then n = n1 or n = n2.  
A directed edge at + infinity is a directed edge  

e = (n1, n2), n1 = (x1,y1,z1), n2 = (x2,y2,z2), z1 = z2 = +∞.  
A directed edge at - infinity is a directed edge  
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e = (n1, n2), n1 = (x1,y1,z1), n2 = (x2,y2,z2), z1 = z2 = -∞. 
A directed edge at infinity is a directed edge at + infinity or at – infinity. 
A directed edge extending to + infinity is a directed edge   

e = ((x1,y1,z1), (x2,y2,∞)),  z1 ≠ ∞. (Note – this definition does not specify that  x1 = y1, 
x2 = y2. That requirement will introduced as Axiom AE1 below). 

A directed edge extending from + infinity is a directed edge  
e = ((x1,y1, ∞), (x2,y2,z2)),  z2 ≠ ∞. 

A directed edge extending to and from - infinity are similarly defined.  
An open directed edge is a directed edge running to or from ±∞. 
A finite edge is one whose end points are finite (i.e. it is not open or at infinity). 
A tall directed edge is a directed edge extending between +∞ and -∞. 
Axiom AE1 

If e = ((x1,y1,z1), (x2,y2,z2))  is an open directed edge, then x1 = x2 and y1 = y2.  
(That is to say, any open edge must be vertical. This is necessary because otherwise it 
is not possible to assign a meaningful value to the slope of the edge). 

Definition of Point on Directed Edge 
For a finite directed edge, e = (n1,n2), n1 = (x1,y1,z1), n2 = (x2,y2,z2): 

On(p, e) =def ∃ t ∈ R: 0 ≤ t ≤ 1, x = x2 + t(x1-x2), y = y2 + t(y1-y2), z = z2 + t(z1-z2).  
 (D7) 

For a directed edge extending to +∞ e = (n1,n2), n1 = (x1,y1,z1), n2 = (x2,y2, ∞): 
On(p, e) =def x = x1, y = y1, z ≥ z1 (note x2=x1 and y2=y1 by (AE1)).   (D8) 

The definitions for other open directed edges are equivalent. 
For a directed edge at +∞ e = ((x1, y1, ∞), (x2, y2, ∞))   

On(p, e) =def ∃ t ∈ R: 0 ≤ t ≤ 1, x = x2 + t(x1-x2), y = y2 + t(y1-y2), z = ∞.   (D9) 
For a directed edge at -∞ the definition is equivalent. 
Distance from Directed Edges 
For directed-edge e, point p,  

D(p, e) =def 
),( 1

min
epOn

D(p, p1). (D10) 

For directed-edges e1, e2,  
D(e1,e2) = def 

),( 11

min
epOn

D(p1,e2). (D11) 

(These apply equally for edges at or extending to ±∞). 
Collary  

For an edge at infinity, the distance to any finite point or edge is ∞.  (C3) 
Definition of Face 
A face f is defined as a set of at least 3 nodes fn, a set of directed-edges fe and a tuple of 
numbers fp = (a,b,c,d): a,b,c,d ∈ R  restricted as follows: 

∀e = (n1,n2) ∈ fe: n1, n2 ∈ fn. (D12) 
∀n ∈ fn: {e1=(n1,n2): n1 = n} and {e2=(n1,n2): n2 = n} are of same cardinality. (D13) 
a2+b2+c2 = 1; (D14) 
f =def (fn, fe, fp).  (D15) 
 Where the context is clear, f will be used to mean fe, fn or fp. e.g. n ∈ f. 

The plane for face fp = (a,b,c,d) is  
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fp = {p = (x,y,z) ∈ P3: ax+by+cz+d = 0}. (D16) 
 
That is to say, a face is defined as a set of nodes, directed edges and a normalised plane 
definition, such that the nodes for every directed edge are included, and every directed edge 
running into a node can be paired with a directed edge running from that node. Note that this 
definition does not require the nodes or edges to lie on the plane. This requirement will be 
introduced later as Axiom A8. 
 
Let F the set of all possible faces. 
Inverse of a Face 
The inverse of a face f = f(fn, fe, fp) is defined as: -f =def  f(fn, -fe, -fp). where -fe = 

{e(n1, n2): e(n2, n1) ∈ fe}, and -fp =  (-a,-b,-c,-d) – that is the same face but with the 
reversed sense. 

Axiom A0 
For any faces defined on the same set of nodes, the plane parameters must agree. 

For f = f(fn, fe, fp), f’ = f’(f’n, f’e, f’p), fn = f’n ⇒ fp = f’p ∨ fp = -f’p.  
This is potentially a difficult issue for the implementor, because if the planar parameters are 
not supplied, it is up to the receiving program to determine them. This means that the 
algorithm must be exactly repeatable, or that the equality of the node sets must be detected, 
and the calculation carried out once only. 
If this constraint is not respected, many of the tests related to dihedral angles between faces 
will be complicated and difficult to make consistent. 
Angle between Directed Edges at shared node 
For e1, e2, n ∈ f, n ∈ e1, n ∈ e2, let a(e1, e2, n) be the angle between e1 and e2 at n measured 
anticlockwise around n, as viewed from outside the face (i.e. from the side of the face for 
which ax+by+cz+d > 0) (see Figure 4 left). (D17) 
In calculating angles where one or other of the directed edges is open or at infinity, the z value 
of ∞ can be replaced by a large number (larger than any other z value, but consistent for all 
nodes). Likewise -∞ can be replaced by a large negative number. The axiom (AE1) will 
ensure that edges running to/from infinity are vertical, and edges at infinity are calculated as 
horizontal. 
Angle between Faces (at an edge) 
For e1 ∈ f1, e2 ∈ f2,  e1 = e2 ∨ e1 

 
 e2, let A(f1, f2, e1) be the dihedral angle between f1 

and f2 at e1 measured anticlockwise around the directed-edge looking in the direction of the 
edge – so that A(f1, f2, e1) = -A(f1, f2, e2) = -A(f2, f1, e1) = A(f2, f1, e2). (see Figure 4 right).
 (D18) 



333 
Rod Thompson and Peter van Oosterom 
Validity of Mixed 2D and 3D Cadastral Parcels in the Land Administration Domain Model 
 
3rd International Workshop on 3D Cadastres: Developments and Practices 
25-26 October 2012, Shenzhen, China 

 

f2 

e1 
A(f1, f2, e1) 

f1 

f1 
e1 

e1 
a(e1, e2, f1) 

 
Figure 4. Left: angle between edges a(e1, e2, n), and Right: angle between faces A(f1, f2, e1) 

Distance from a Face 
For plane fp and point p = (x,y,z),  

D(p, fp) = |ax+by+cz+d|. (D19) 
∀ ni ∈ f, let ni’ be the point at the base of the normal from ni to fp. The points ni’ form a 
planar multi-polygon.  

Let On(p, f) be D(p, fp) = 0 ∧ (p is inside the closure of the planar polygon).  (D20) 
For face f, point p, D(p, f) = 

),( 1

min
fpOn

D(p, p1). (D21) 

Definition of a Shell 
A shell  s= (sf , se, sn)  is a set of faces sf and their associated directed edges se and nodes sn.  

sf  ⊆ F (D22) 
se = {e: ∃f:  e ∈ f  ∧ f ∈ sf} (D23) 
sn = {n: ∃f:  n ∈ f  ∧ f ∈ sf} (D24) 
shell s =def (sf, se, sn)  (D25) 

Note that  this definition does not require a shell to close. Later the concept of a “cycle shell” 
will be introduced as a partially bounded (“closed”) shell. 
Where the context is clear, s will be used to mean sf, se or sn, e.g. e ∈ se.  
Definition of an Undirected Edge 
An edge is a collection of the directed edges of a shell that define the junction between faces. 
An edge u (s, n1, n2) within the shell s is defined as: 

u (s, n1, n2) = {e = (m1,m2): e ∈ s ∧ m1 = n1 ∧ m2 = n2}  
 ∪ {e = (m1,m2): e ∈ s ∧ m1 = n2 ∧ m2 = n1}.   (D26) 

Corollary u (s, n1, n2) = u (s, n2, n1), hence u is undirected. (C4) 
Corollary if e1, e2 ∈ u, e1  

e2 or e1  
e2. (C5) 

Let the set of all undirected edges be U. 
Definition of Corner and Fold 
A corner v2(f, e1, n, e2) within face f is the meeting at node n of two directed edges e1 and e2 
such that 

∃ n ∈ N: (e1, e2, n ∈ f , n ∈ e1, n ∈ e2) and 
 e ∈ f, n ∈ e ⇒ a(e1, e2, n) < a(e1, e, n) (D27) 
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(Descriptively, a corner is a pair of edges meeting at a node, with no intervening edges in the 
same face. Note - if the edges do not have a node in common, a corner is not defined – see 
Figure 5A). 

 

e6 

e5 e2 

e1 

f 
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A B 

f1 

f2 f3 

f4 

fold fold 
inside inside 

 
Figure 5. A. a single face with two corners marked. Note that (f, e1, n, e2), (f, e2, n, e3),…, (f, e5, n, e6),… 
are all corners, but that (f, e1, n, e6) is not a corner, because e2 intervenes. B. An edge which is the meeting 
of 4 faces, 2 folds and 4 directed edges 

Let V2 be the set of all corners. 
Notation: e ∈ v2 where v2 = v2 (f, e1, n, e2), (v2 ∈ V2) is taken to mean e = e1 or e = e2. 
A fold v3(s, f1, e1, f2) within shell s is the meeting of two faces f1 and f2 at directed edges e1 

and e2 such that f1 ∈ s,  f2 ∈ s,  e1 ∈ f1,  e2 ∈ f2, e1 
 
 e2 and: 

(f ∈ s, e ∈ f, e 
 
 e1) ⇒ A(f1, f2, e1) < A(f1, f, e1) and 

(f ∈ s, e ∈ f, e 
 
 e1) ⇒ A(f1, f2, e1) ≤ A(f1, -f, e1). (D28) 

(Descriptively, a fold is a pair of faces that meet at an edge, with no intervening faces at the 
same edge between them - see Figure 5B). 
Let V3 be the set of all folds. 
Notation: f ∈ v3 where v3 = v3(s, f1, e1, f2), (v3 ∈ V3) is taken to mean f = f1 or f = f2, while e 
∈ v3 is taken to mean e

 
e1 or e 

 
 e1 ∧ e ∈ f2.  

Corollary: a fold is a subset of an undirected edge. (C6) 
 
3. THE AXIOMS 

 
These are reprinted from Thompson and Van Oosterom (2011) as a convenience, however 
axioms A2 and A6 have been modified to exclude their application at ±∞. 

Axiom A1: n1, n2 ∈ s: (n1 ≠ n2) ⇒ D(n1, n2) > ε. No two nodes are closer than ε apart. 
Axiom A2: ∀n = (x, y, z) ∈ s, -∞ < z < ∞: ∃f1, f2, f3 ∈ s: n ∈ f1, n ∈ f2, n ∈ f3  f1 ≠ f2 ∧ f2 ≠ 

f3 ∧ f1 ≠ f3. Each finite node has at least 3 incident faces. (Optional axiom). 
Axiom A3:∀n ∈ s: ∀f1, f2 ∈ s, n ∈ f1, n ∈ f2; On(p, f1), On(p, f2), D(p, n) > ε 
 ⇒ ∃ e1 ∈ f1 ∧ e2 ∈ f2 ∧ (e1 

 
 e2 ∨ e1  

 e2). The faces incident at a node do not intersect 
one another except at a common edge. 
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Axiom A51: ∀e1, e2 ∈ s, D(e1, e2) < ε ⇒ ∃ n: n ∈ e1, n ∈ e2. Non-intersecting edges must 
not be within a distance ε of each other   

Axiom A6: ∀e ∈ s, e not at infinity, ∃ v ∈ s: e ∈ v. Every directed-edge of a face in the 
shell except those at infinity, belongs to a fold. (Note that edges at infinity have no 
adjoining edges – see (C12) below. Edges running to or from ±∞ do follow this axiom). 

Axiom A7: ∀n ∈ s, ∃f1, f2 ∈ s: n ∈ f1, n ∈ f2, f1 ≠ f2. The semi-edges that delineate a hole 
in a face must be part of the outer boundary of other faces. (Optional axiom) 

Axiom A8: ∀ f ∈ F, ∀ n ∈ f, D(n, fp) ≤ ε’. Bounded faces are planar to a tolerance of ε’. 
Axiom A9: ∀f, n ∈ s, n ∉ f ⇒ D(n, f) > ε. No node is within ε of a face unless it is part of 

the definition of that face. 
Axiom A10: ∀e ∈ s, ∀f ∈ s: e ∉ f,   (∃ p: D(p, e) = 0 ∧ D(p, f) = 0) ⇒ n1 ∈ f2 ∨ n2 ∈ f2,  

where e = (n1, n2). No directed-edge intersects a face except at a node of that edge. 
Axiom S1: f1 = (f1n, f1e, f1p) ∈ s ∧ f2= (f2n, f2e, f2p) ∈ s  ⇒ f1n ≠ f2n.  No face may be paired 

with an anti-equal face in the same shell. 
Types of Faces 
It is useful to assign names to certain types of faces (see Figure 6), especially those that  are 
associated with the meeting of 2D and 3D parcels. 

 

z = ∞ 
directed 

edge 
extending 

to ∞ tall 
face 

open 
face 

open 
face 

open 
face 

closed 
face 

directed edges at -∞ 

closed 
face 

z = -∞ 

directed edges at ∞ 

 
Figure 6. Types of faces and edges 

Corollary: In any face, any directed edge extending to infinity must connect to a directed edge 
at infinity. (Assuming it does not, it must connect to an edge which also has the same x and y 
coordinates on both nodes – violating A1 or A5).  (C7) 
An open face is one which has at least one edge at infinity. (D29) 
Corollary: an open face has at least two open directed edges which meet the directed edge(s) 
at infinity. (C8) 
A tall face is an open face with exactly 4 edges, one of which is at +∞, another at -∞ (i.e. it is 
open at the top and bottom). (D30) 

                                                           
1 Note Axiom A4 was defined in an earlier paper, but proved to be redundant. The numbering system has been 
retained to assist with comparison with earlier papers on this subject. 
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Corollary the other two edges are vertical and run between the two infinities.  (C9)  
A closed face is one which is not open. (D31) 
Corollary a closed face has no vertices at infinity. (C10) 
Corollary any face must have at least two edges which are not at infinity.  (C11) 
Corollary: if u is an undirected edge at infinity of spatial unit s, it consists of exactly one 
directed edge e of s).  (C12) 
Note that the definition of a face fp = (a,b,c,d): a,b,c,d ∈ R implies that a face cannot be 
defined “at infinity” – that is a face where each z value is ∞ (or -∞). This leads to C12. 
Definition of LA_FaceString 
LA_FaceString is defined in ISO1952 (ISO-TC211 2009), but this ties that definition in with 
the axioms of this paper. By this approach, an LA_FaceString is a shell composed of n tall 
faces f1…fn, (with edge sets fe1..fen) (see Figure 7). 

fei = {ei, gi, hi, ji} ei, gi, hi, ji ∈ E   where 
  ei = ((xi,yi, ∞), (xi,yi, -∞))   
  gi = ((xi,yi, -∞), (x’i,y’i, -∞))   
  hi = ((x’i,y’i, -∞), (x’i,y’i, ∞))   
  ji = ((x’i,y’i, ∞), (xi,yi, ∞))   

with x’i = xi+1  and y’i  = yi+1 (i+1 cyclic if LA_FaceString is a polygon)  
and for i = 1..n-1, hi  

 ei +1.  

 

+∞ 

-∞ (xi+2,yi+2,-∞) 

(xi+2,yi+2,∞) 

(xi+1,yi+1,-∞) 

(xi+1,yi+1,∞) 

f1 

f2 
fi 

fn 

ei+1 

fi+1 

ei 

gi 

hi 

ji 
(xi,yi,∞) 

(xi,yi,-∞) 
 

Figure 7. A face string (LA_FaceString) 

Definition of a Cycle Shell 
Define a cycle shell as a shell s that satisfies axioms A0 to A10 apart from A2 and A7. 
 
Note that the terms “open” and “closed” are rather overloaded in meaning, so the terms 
“cycle” and “interior defining” are used here to indicate that it is possible to determine for any 
point in P3 whether it is inside the shell or not. The term “closed” would not be appropriate to 
an “interior defining shell” that has point(s) at infinity within its interior. Note that the point in 
cycle shell test (Thompson & van Oosterom 2011) can return a result of +1 or -1, and so a 
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cycle shell can be defined as “interior-defining” or “negative interior defining”. In any case a 
cycle shell divides the space into inside and outside. (Normally for a polyhedron there is one 
outer cycle shell and 0 or more inner cycle shells). 
 
4. DEFINITION OF CONNECTIVITY 

 
Point-wise connectivity: A C0 face f’ = f’(e) in shell s is a subset of a face f ∈ s such that: 

e1 ∈ f’ ⇒ (∀n ∈ e1 ⇒ n ∈ f’)   
n ∈ f’ ⇒ (∀e ∈ f: n ∈ e ⇒ e ∈ f’) (D32) 
 (Descriptively, for any edge in f’ the nodes that define it are in f’, for every node, all 

directed edges that meet at that node are in f’). 
C0(f) =def ∃ e ∈ f ∧ f = f’(e) (D33) 

(Descriptively, a face is point-wise connected if it has at least one directed edge, and all other 
edges/nodes are point-wise connected to it – see Figure 8) 
Strong connectivity: A C1 face f” = f”(e)  in shell s is a subset of a face f ∈ s such that: 

e1 ∈ f” ⇒ (∀n ∈ e1 ⇒ n ∈ f’)  
e1 = (n1, n2) ∈ f”∧ e2 = (n2, n3) ∈ f  ∧ v2(f, e1, n2, e2) ∈ V2  ⇒ e2 ∈ f” (D34) 

 (Descriptively, for any edge in f” the nodes that define it are in f”, and all directed 
edges that meet at that node in a corner are in f”). 

C1(f) =def ∃ e ∈ f ∧ f = f”(e) (D35) 

 
face C0 face C1 face  

Figure 8. Faces, with weak and strong connectivity depicted (to the left the more generic concept and to 
the right the more specific concept; i.e. a C1 face is a C0 face is a face, but the reverse is not per se true) 
 
In common parlance, a face and a C0 face would be referred to as multi-polygons, with a C1 
face being a simple polygon – see Figure 8. 
A C0 shell s’ = s’(f) in cycle shell s a subset of s such that 

C0(f1) ∧ f1 ∈ s’ ∧ n ∈ f1 ∧ f2 ∈ s ∧ C0(f2) ∧ n ∈ f2  ⇒    f2 ∈ s’ (D36) 
 (For every face in s’ all C0 connected faces that meet it at a node are also in s’). 

Pointwise connectivity: C0(s) =def ∃ f ∈ s ∧ s = s’(f) (D37) 
A C1 shell s” = s”(f)  in cycle shell s a subset of s such that 

C1(f1) ∧ f1 ∈ s” ∧ e1 ∈ f1 ∧ f2 ∈ s ∧ C1(f2) ∧ e2 ∈ f2 ∧ (e1 
 
 e2) ⇒ f2 ∈ s” (D38) 

 (For every face in s” all C1 connected faces that meet it at any edge are also in s”). 
1D Connectivity: C1(s) =def ∃ f ∈ s ∧ s = s”(f) (D39) 
A C2 shell s° = s° (f)  in cycle shell s a subset of s such that 

C1(f1) ∧ f1 ∈ s°  ∧ e1 ∈ f1 ∧ f2 ∈ s ∧ C1(f2) ∧ ∃v3 (s, f1,e1,f2) ⇒ f2 ∈ s° (D40) 
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 (For every face in s°  all C1 connected faces that meet it at a fold are also in s°). 
Strong Connectivity: C2(s) =def ∃ f ∈ s ∧ s = s° (f) (D41) 
 
The cycle shell, C0 shell and C1 shell could be referred to as multi-spatial units, while the C2 
shell can be termed a simple spatial unit (see Figure 9). Note that any spatial unit could, by 
this definition, have holes (to define dents in the surface of the outer and/or inner shells), 
which may “tunnel through” the body (note no inner shell), or be total inclusions with no 
connection to the outer boundary (a true inner shell within the outer shell). 

 

shell cycle shell C0 shell C1 shell C2 shell 

A B C 

C2 shell 

D E F 

 
Figure 9. Shell, cycle shell, two types of weak connectivity and strong connectivity. Note that A is not an 
“interior-defining” shell, and that F is C2, although it has a weak connection between some of its faces. 

5. FORMING A SPACE PARTITION USING TOPOLOGY BASED SPATIAL UNITS  
 

As was briefly discussed in Thompson & van Oosterom (2011), we define a normal (LADM 
based) spatial unit as an interior-defining C2 shell (alternatives – C1 shell, C0-shell or even 
cycle shell not requiring connectivity) with zero or more negative-interior-defining shells 
inside. 
 
The LADM also supports multi-polygon spatial units, although this is not the preferred option 
as they should better be modeled as separate spatial units belonging to the same LA_BAUnit. 
In any case, ‘multi-polygon’ spatial units will not be discussed further in this paper. 
 
We can define a 2D spatial unit as a spatial unit where all faces are tall. 
 
We can define a liminal face as a set of faces within a single spatial unit which can be 
dissolved into a tall face. That is, by removing all anti-equal edges from the set of edges in the 
faces, and removing all nodes along straight lines, we are left with 4 edges that define a tall 
face (see Appendix 1). For example, in Figure 2 the boundary between the apartment block 
and the 2D adjoining parcel would be represented as a liminal face. 
 
We can define a liminal spatial unit as a spatial unit where all faces are tall or liminal. 
 
We define a 3D spatial unit as one which has at least one face which cannot be made part of a 
liminal face. 
 
Within an individual spatial unit, require Axiom S1 (no anti-equal pairs of faces). 
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We can define the outer boundary of all parcels as a single negative-interior-defining C2 cycle 
shell. (Alternatives – C1 shell, C0-shell or even cycle shell not requiring connectivity). 
 
A space partition consists of m spatial units s1…sm and one “rest of the world” s0 such that for 
0 ≤ i  ≤ m, f ∈ si ⇒ ∃ f’ ∈ sj: 0 ≤ j ≤ m: f 

 
 f’. That is: for every face in the partition, there is 

an anti-equal face. Axiom S1 ensures that si ≠ sj. 

Notes on the “rest of the world” parcel. 
Using the terminology of Gröger and Plümer (2005), we could define a parcel called OUT, 
which is not bounded in any direction, and consists of the remainder of the space when all 
parcels are removed. i.e. for point p ∈ R3, p ∈ P (for some parcel P) ⇔ p ∉ OUT. OUT has 
no outer boundary, but it has a cycle shell that is an inner boundary (s0 above). 
 
1) We can require OUT to be a 2D spatial unit. This means that if we are using topology 
based spatial units, there can be no 3D spatial units directly adjoining OUT. This should not 
be a problem, and it has some advantages. The alternative is that OUT could be defined as a 
liminal parcel. 
 
2) We can define OUT to be C2, or any other degree of connectivity desired. This will prevent 
any voids within the real coverage of 2D and 3D spatial units. 
 
3) We do not need any boundary at a z value of plus or minus infinity, since the individual 
parcels have no boundary at z = ±∞. 

 
6. CONCLUSIONS 

 
This paper has addressed the issue of geometric validity of cadastral information in relation to 
the LADM and ISO19152. This includes the issues of the mixture of 2D and 3D parcels that 
exist in virtually all cadastres worldwide, and shows that a rigorous meaning can be attached 
to the concepts of ”face string”, and ”liminal” parcels. It has further shown that the outer 
boundary of the universe of discourse can be correctly handled. 
 
6.1 Future Research 
A restatement of the validation axioms should be made using GeoUML (Belussi et al. 2011) 
as a cross-check on both approaches. 
 
The question of closure of the algebra should be researched – perhaps in relation to the ”Dual 
Grid” (Lema and Güting 2002) and the ”Regular Polytope” (Thompson 2007) approaches 
 
In loading the existing paper plans, some have validity failures in the actual measurements. In 
particular, many have non-planar surface. This is a problem because, even though they are 
slightly ambiguous, they are the legal definition of the parcels, so cannot be easily changed. 
 
In case of partially unbounded parcels (to below or above or both directions), what would be 
appropriate size measures for area and volume? 
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6.2 Formalizing LADM Levels 
The LADM also allows the use of levels to organise the parcels (spatial units). One of the 
options is having: a. “level one” being a complete 2D coverage, implying a collection of 
unbounded columns covering the complete 3D space (within the domain) and b. another level, 
being completely bounded 3D parcels, which have a higher priority (i.e. from the conceptual 
unbounded 3D columns the explicit 3D spaces should be subtracted). Also, for this possibility 
within the LADM a set of axioms defines valid configurations. Note that the second level 
with completely bound 3D parcels may contain objects that cross many 2D parcels (when 
considered as vertically unbounded 3D columns), for example, when modelling the legal 
space related to a tunnel. Also note that for level one a 2D topology encoding is the natural 
approach (but not per se needed) and that for the second level a 3D geometry (simple features) 
encoding is the natural approach. The concept of LADM levels have to be included in the 
(extended) axioms for valid representation. 
 
6.3 Finite Precision 
The axioms do not in themselves require infinite precision mathematics, and note that a node 
is defined based on computer representable points (on P3), while a point is defined in R3. 
Provided the accuracy of calculation is considerably finer than ε and ε’ it is believed that they 
can be tested successfully. What is not assured is that the same answers will be obtained on 
different hardware platforms. For example, a point that is very close to being a distance of ε’ 
from a face may be accepted on one machine but rejected on another.  
 
Provided these are seen as “nominal” limits, where the data should always be considerably 
better that the minimum quality requirement, this should not be a problem. 
 
6.4 Algebraic Closure 
What cannot be promised by this approach is a closed algebra. It is easy to generate counter-
examples, where for example, the intersection of two valid parcels is not a valid parcel. As a 
result, this approach must be seen as a means of exchanging cadastral information, not a way 
of storing and manipulating it. 
 
6.5 Horizontal and Vertical Faces 
In the definitions and axioms, there was heavy use of the concepts of horizontal and vertical 
faces. This may be obvious when using a (local) large scale coordinate reference system. 
When switching to another coordinate reference system, it may very well be that the 
horizontal (or vertical) faces are not longer horizontal (or vertical) anymore. Also, when 
taking an earth science view, the intended faces are not horizontal planes, but rather 
concentric sphere patches. Similary, the vertical faces are not defined by vertical (and parallel) 
planes, but rather by planes converging in the center of the earth. How to address this issue in 
our formalization of valid representations (as valid in one coord reference system, may not be 
valid in another coordinate reference system) is not trivial. In the meantime, our guideline is 
that we intend horizontal and vertical in the sense of a large scale representation. 
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APPENDIX I Testing for a liminal set of faces. 
 
Take all the faces of s that are candidates to form a tall face. All must have the same plane 
definition fp (see Figure 10). 
 
 

 

p1 

p2 

p3 
p4 

f 

 
Figure 10 Testing for a liminal face. All the anti-equal pairs of directed edges are 
removed, and then unnecessary points removed from remaining edges (p1 – p4). 
 
Form a set of directed edges from all these faces. 
 
For every pair of edges e1, e2 such that e1 

 
 e2, remove e1 and e2 from the set.(note – these 

must be exactly anti-equal) 
 
For every pair of remaining edges in the set e1 = (p1, p2), e2 = (p3, p4) such that p2 is not a 
node at infinity, and p2 = p3 (exact equality), remove e1 and e2, and replace them with the 
directed edge (p1, p4).  
 
If we are left with exactly 4 directed edges, one at +∞, one at -∞, and the others being tall 
directed edges, the set of faces is liminal. 
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