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ABSTRACT 

In the past few years, the rapid evolution of the Wireless Sensor Networks (WSNs) made them a powerful tool 
for monitoring and observing the natural environment. WSNs are adopted more and more in various 
applications, e.g. for fire detection, geohazards monitoring or deformation detection in large scale areas. The 
spatial distribution of the sensors of a WSN must follow specific criteria. The equilateral triangle grid leads to 
the maximum coverage with the minimum number of sensors. Nevertheless, in most large-scale outdoor 
applications, achieving the ideal deployment geometry is hard or even impossible. In such environments the 
positions of the sensors have to be chosen among a list of possible points, which in most cases are randomly 
distributed. In order to achieve a geometry as near as possible to the theoretical optimum, the OptEval algorithm 
has been proposed. It makes use of the Centroidal Voronoi Tessellation (CVT). Although the case studies had the 
desired results, their simulation took place in the continuous space. There are cases, in which may be impossible 
to cover the whole area with sensors due to natural constraints (e.g. lakes, holes etc.). This paper evaluates the 
effectiveness of the proposed method in an area with holes. Alternative scenarios are examined, by changing 
the values of the parameters that affect the final result, i.e. the number of the points to be observed, the number 
of the available sensors and the radius of the sensors. 

 
 

I. INTRODUCTION 

Wireless Sensor Networks have rapidly evolved to a 
powerful tool for the monitoring and the observation of 
natural environment, among other fields. The early 
warning systems e.g. for fire or deformation detection 
are of the main fields that use this technology as well as 
the monitoring of other environmental parameters as 
temperature, humidity, pollution and radiation.  

Determining the ideal position of each sensor of the 
network is of crucial importance in terms of both 
geographical and network coverage.  

The geographical planning of a WSN must follow a 
simple rule: Maximum coverage with the minimum 
number of sensors. The key to achieve this, is the ideal 
geometry. That is to place the sensors (nodes) in the 
equilateral grid positions. Usually, this gets impossible 
to be achieved. Either because the number of the 
sensors is extremely big and the deployment in such 
geometry would raise the network deployment cost or 
because the application itself determines that the 
nodes position can only be chosen among a set of 
predetermined positions. 

Additionally, in many real-life applications it may be 
impossible to cover the whole area with sensors due to 
natural constraints (e.g. lakes, holes, buffer zones etc.) 

A common such as land slide detection projects, some 
thousands of sensors are needed. The placement of the 
sensors in equilateral grid would take too long in time. 
Moreover, the deployment positions are distributed in 
random positions inside the area.  

The optimum solution for the coverage problem of 
WSN nodes is the main requested by the scientific 
community. Computational geometry seems to be ideal 
for solving the multi-criteria problem of network 
coverage, as many solutions are based to its algorithms 
and applications. 

Whichever algorithm is chosen, the user wants to 
know a priori how well does the deployment plan 
approximates the ideal geometry. A geometry as near 
as possible to the ideal one, minimizes the numbers of 
sensors needed, which leads to less costs for the entire 
network. 

A geometrical approach to the deployment problem 
using Centroidal Voronoi Tessellation (CVT) was 
proposed by (Iliodromitis, 2017). The OptEval 
algorithm, using the Centroidal Voronoi Tessellation 
(CVT), results in the nearest possible geometry to the 
ideal one, minimizing the numbers of sensors needed, 
which subsequently means lower cost for the entire 
network. 
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This paper examines the proposed method in 
different scenarios for the same area with randomly 
distributed observation points and four holes inside it. 
The different parameters that affect the final result, 
such as the number of observation points, the number 
of the available sensors and the number of iterations of 
the Lloyd’s algorithm, are changed. 

The rest of this paper is organized as follows: In 
Section II, previous work related to the deployment and 
the evaluation of area coverage methods are described. 
In section III, the deployment and evaluation 
methodologies are explained briefly. In section IV, the 
case study with 90 different scenarios, according to the 
different parameters, is described, as well as the 
outcome. Finally, Section V concludes the paper. 

 

II. RELATED WORK 

The scientific community has been occupied to a 
significant extent with finding the optimum solution for 
the coverage problem of WSN nodes. 

Computational geometry seems to be ideal for 
solving the multi-criteria problem of network coverage, 
as many other solutions are based to its algorithms and 
applications. 

In most papers, only a couple of scenarios are 
described for each method, so it is difficult to 
understand and explain the reaction of each algorithm 
towards the change of the different parameters. 

Additionally, there is a complete lack of papers, 
testing the proposed algorithms in areas with physical 
constraints, as described above (buffer zones, holes, 
sub-areas that are not needed to be observed etc). 

There is a main constraint that the solution must 
follow. The sensors have to be deployed in certain 
positions chosen from a list of possible ones. The 
methodology tested in this paper is explained 
thoroughly by (Iliodromitis, Pantazis, Vescoukis, 2017), 
and tested by (Iliodromitis, Lambrou, 2018). 

It was the first time the coverage problem was 
approached using this part of computational geometry, 
although the same method was proposed by (Zhou, Jin 
& Wu, 2013) for optimizing the network 
communication problem. 

Voronoi Diagram (VD) is proposed as an approach to 
the solution by (Vieira et al, 2003) but for a large 
number of sensors the algorithm becomes extremely 
time consuming. 

Delaunay Triangulation (DT) is the basis for coverage 
algorithms. A methodology to minimize energy 
consumption and achieve complete coverage of the 
area is proposed by (Wang and Medidi, 2007), but they 
study the ideal geometry scenario with no constraints. 
The aforementioned algorithm is improved by (Vu and 
Li, 2009) studying the boundary effect, but they mainly 
focus on minimizing energy consumption. Another 
coverage proposal using DT is set by (Wu, Lee, & Chung, 
2006). A solution using Delaunay Triangulation with 
constraints (CDT) is proposed by (Devaraj, 2015). 

Another study has been conducted by (Argany et al, 
2011). They gather and record different coverage 
algorithms for WSN. They focus on algorithms based on 
DT and VD, and propose a solution that uses Voronoi 
polygons based on spatial information (physical 
boundaries, DTM etc). 

However, there are additional constraint that has to 
be examined. There may be sub-areas that the sensors 
can’t be deployed (e.g. a lake inside the area) or in some 
sub-areas we may be not interested to deployed. 

Apart from the lack of different scenarios, one can 
note the lack of an evaluation index to verify how good 
or how efficient the deployment is. Most of the indexes 
proposed compare the deployment method with other 
deployment methods, without providing a universal 
value for the spatial distribution of the sensors of a 
WSN. 

A typical index is proposed by (Chizari, Hosseini, & 
Poston, 2011). They determine the percentage of the 
area covered by at least one sensor in relation to the 
whole area and the distances between the sensors. 
Furthermore, the sensors are separated in those that 
have large, adequate or small number of other sensors 
near them. The percentage of the supervised area is 
also used as an index by (Vieira, et al, 2003).  In both 
cases no information is given for the sub-areas that are 
not covered by any sensor or how well the deployment 
of the sensors approximates the ideal triangular grid, 
which results in the optimum area coverage. 

An appropriate index is proposed by (liodromitis, 
2017) and explained by (Iliodromitis, Pantazis, 
Vescoukis, 2017). The “g” index evaluates the geometry 
achieved in a WSN based on Delaunay Triangulation. 
The deployment positions are modeled as a Delaunay 
Triangulation and all scenarios are compared to the 
equilateral triangle grid. The proposed methodology is 
easy to be programmed as it is based on tools and 
methods of computational geometry. The index takes 
into account the geometry of triangles that are formed 
from the deployment positions. It is independent of the 
position or the orientation of the triangles. 

Furthermore, it allows to compare the triangles 
meshes created in scenarios with different sensing 
range. The metric is unique for each scenario, so the 
different scenarios are directly comparable. 

 

III. THE DEPLOYMENT AND EVALUATION METHODOLOGIES 

A. The deployment method 

A CVT is a special Voronoi Diagram, where the 
generating point of each Voronoi cell is also its mean 
(i.e., center of mass) (Zhou, Jin, Wu, 2013). In other 
words, the generator of each CVT polygon must also be 
the centroid of each polygon. It approximates an ideal 
partition of the area, through the optimal allocation of 
the generators. According to Gersho’s conjecture, "as 
the number of generators increases, the optimum CVT 
will form a uniform partitioning of the space, with 
shapes that would result from the repetition of a single 
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polytope. The shape of the polytope only depends on 
the spatial dimension". In 2D the basic polygon is a 
regular hexagon (Du, Wang, 2005). 

In limited field applications where the sensors to be 
deployed are few, the deployment can be done to the 
positions arising after the CVT construction. These 
positions are the center of mass of the polygons and 
they do not refer to specific points of the original 
dataset. There are cases that the deployment positions 
must belong to the original set. Therefore, result 
additional constraints. 

The solution is approached in two phases: 
Given the coordinates of the points to be observed 

(which are the candidate deployment positions, 
simultaneously), the convex hull is determined (de Berg 
et al., 2008), (Joswig, Theobald, 1998). Then according 
to the number of sensors, the sensing range and the 
termination condition for the Lloyd’s algorithm the 
theoretical positions of the sensors are determined, i.e. 
the CVT generators. 

Finally, the actual deployment positions are 
determined, by finding the nearest neighbors that 
belong to the original dataset and moving the 
theoretical points to the closest real position. 

 
B. The Evaluation Method 

The fact that the equilateral triangle consists of three 
edges equal, leads to a specific property, using 
measures of dispersion from the science of statistics 
(Bolstad, 2007). The standard deviation of the mean of 
its edges, is equal to zero. The smaller the standard 
deviation is, the closer the random triangle is to the 
equilateral one. 

The use of the mean value 𝜎0 of the standard 
deviations of the edges of each triangle of the TIN, 
shows how well the triangles that are formed adapt to 
the regular triangular grid. 

 

 
Figure 1. Comparison of vertexes of a TIN vs equilateral 

triangle grid 

 
When the number of the triangles is increased or 

decreased (e.g. when the number of sensors changes), 
the index changes and the results are directly 
comparable. The problem arises when comparing 
scenarios involving sensors with a different sensing 

range R. Then, in these cases the index to be used will 
be: 

 𝑔 =
�̅�0

𝑅
 (1) 

 
The smaller prices the index gets, the better 

adjustment is achieved. 
For the final positions of the sensors, the 

corresponding Delaunay Triangulation is constructed 
(Devadoss and O Rourke, 2011), choosing the 
appropriate algorithm (Cormen et al, 2009), (de 
Oliveira, 2012) and the TIN is compared with the 
equilateral triangle grid. 

 
 

IV. CASE STUDY 

In order to examine the operation and efficiency of 
the above procedures in areas with constraints, 
different scenarios were created and tests were 
performed with different parameters. 

Scenarios included different number of points for 
observation, different number of sensors and various 
sensing ranges Rs in order to find if the solutions follow 
specific patterns and compare them. 

The dataset that is used consists of randomly 
generated points. 

An area of 1000m x 1000m (fig. 2) was chosen with 4 
empty sub-areas in it. In these 4 areas is considered that 
no sensor deployment can be done. The total area 
excluding the empty sub-areas is 770000m2. 

 

 
Figure 2. The case study area 

Three basic scenarios were created concerning three 
different types of observation point densities: low 
medium and high. For each case 3 different range 
sensors (20m, 30m and 40m) were used. 

Taking in to consideration the sensor range, the 
minimum number of required sensor comes out as the 
ratio of the examined area (for this case 770000m2) to 
the area that every sensor covers. For the range of 20m 
the denominator is equal to 1256m2 namely min 610 
sensors, for the range of 30m is equal to 2827m2 namely 
min 270 sensors and for the range of 40m is equal to 
5026m2 namely min 150 sensors. 

Finally, for each one of the different cases, the 
coverage of the area was examined for a different 
number of sensors (10 different cases). Starting from 
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the minimum number of required sensors and gradually 
increasing their number, up to about 50% more. The 90 
different scenarios are presented in Figure 3. 

For each case, the number of points not observed by 
any sensor and the coverage percentage of the points, 
the standard deviation of the mean of the triangle 
edges 𝜎0, and the g index are recorded. 

 
Figure 3. The different scenarios that were created 

 
Figure 4 shows two of the created scenarios: 
• Low density, R = 30m and N = 315 (fig. 4a) 
• Medium density, R = 40m and N = 183 (fig. 4b) 
The coverage percentages are 95.79% (182 

unsupervised points) and 96.73% (437 unsupervised 
points) respectively. 

Unsupervised points are depicted in red colour and 
are concentrated mainly near or on the internal and 
external boundaries of the area, while very few are 
within the area. 

 

 
Figure 4a. Sensor deployment for low density, R=30m and 

N=315 

 
Figure 4b. Sensor deployment for medium density, R=40m 

and N=183 

Figure 5 shows the coverage percentage achieved in 
relation to the number of sensors used for the three 
different densities and the three different ranges. 

In all cases examined, even if the minimum number 
of sensors is used, coverage percentage of 88% - 90% is 
achieved. On the other hand, no full coverage is 
achieved even if 50% more sensors than the minimum 
are used. The maximum coverage achieved is about 
99% which is assessed as satisfying. Most unsupervised 
points are concentrated to the inner and outer 
boundaries of the area. 

An important outcome is about the influence of the 
increment of the number of sensors to the coverage 
percentage. Increasing the number of the sensors over 
a number does not means significant increase of the 
coverage percentage. Thus, the cost of the network 
deployment increases without improving the desired 
solution significantly. 

The decision that has to be taken is, if the increase of 
the number of the sensors, has the desired impact on 
the coverage percentage of the network. This mainly 
depends on the needs of each application and the cost 
of the additional number of sensors in the total cost of 
the network. In any case, if a small subarea with points 
remains unsupervised due to its geometry can be 
treated autonomously and the sensors can be deployed 
manually. 

Moreover, the most effective sensor in terms of the 
coverage percentage is the one with the larger radius R. 
For the same number of sensors, the coverage 
percentage in the different densities (low, medium and 
high) is less varied than the other two types of sensors. 
Therefore, it could be used in are-as with unequal point 
density, without having to separate it into individual 
sections, for which a separate case study should be 
done. 

The sensing range does not affect the coverage 
percentage achieved. The same percentage increase of 
the number of the sensors, leads to a similar increase in 
coverage percentage. 

Nevertheless, the most effective sensor in terms of 
the coverage percentage in the three basic scenarios is 
the one with the larger radius. For the same number of 
sensors, the coverage percentage in the different 
densities (low, medium and high) is less varied than the 
other two types of sensors. Therefore, it could be used 
in areas with unequal point density, without having to 
separate it into individual sections, for which a separate 
case study should be done. 

The empty sub-areas do not affect the coverage 
percentage as this remains as high as the continuous 
area (Iliodromitis, Lambrou, 2018). 

Figure 6 shows the change of the g index for each 
scenario. The g index values fluctuate from 0.24 to 0.47 
for all the scenarios. 
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There is a constraint at the evaluation process of the 
network. The internal empty sub-areas must be 
excluded from the TIN creation. Otherwise there will be 
triangles with big and uneven edges, leading to false 
calculation for the g index (fig. 7b). 

Thus, breaklines were formed at the internal 
boundaries and the Delaunay Triangulation was created 
only for the supervised area (fig 7a). 

 
Figure 7a. Delaunay Triangulation using breaklines 

 
Figure 7b. Delaunay Triangulation without using breaklines 

 
Using sensors with higher radius, the g index get 

lower values, meaning that the quality of the 
deployment is better. The range of g for the 40m 
sensors is less than 0.1. The corresponding value for the 
20m and 30m sensors is about 0.2. 

 
Figure 5. Coverage percentage achieved in relation to different density areas the number of sensors used for different R 
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Figure 6. The change of the g index in comparison to the number of the sensors for each scenario 
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That means that for longer range sensors, the 
network tends to form geometry closer to equilateral 
grid. In order to achieve the same quality deployment 
as this of 40 sensors we need double sensors of 30m 
and six times more sensors of 20m. 

Moreover when the number of sensors increase, the 
g index decreases. Therefore the better adjustment is 
achieved. As the density of points in the area increases, 
the g index decreases. 

Both conclusions were also verified in previous work 
concerning a continuoys area (Iliodromitis, Lambrou, 
2018). 

The g index gets bigger values than these, in an area 
with no internal holes, but it follows a similar pattern, 
comparing the corresponding diagrams. 

 
 

V. CONCLUSIONS 

Wireless Sensor Networks are increasingly used to 
support a wide variety of applications, such as 
environmental or structural monitoring. In all cases, 
maximum geographical coverage with the minimum 
number of sensors is required. 

OptEval algorithm offers a geometrical solution to the 
problem, based on the properties of Centroidal Voronoi 
Tessellation. This ensures that the solution given is the 
best for the given geometry (points’ distribution, 
number of sensors, sensing range). Each sensor is 
placed as far away as possible from its neighbors. 

A total of 90 different scenarios have been carried out 
for an area with specific dimensions and four internal 
holes inside it. Different points’ density, number of 
sensors and sensor radii were tested. 

The simulations showed that the algorithm is efficient 
for such areas too. The coverage percentage is about 
the same as in a continuoys coverage area with similar 
characteristics. In both cases it varies from 88% to 98%. 

The analysis of the results shows that increasing the 
number of the sensors above a threshold does not lead 
to a significant increase in coverage percentage. 

The g index is an index which takes into account the 
geometry of triangles that are formed from the 
deployment positions. The metric is unique for each 
scenario, so different scenarios can directly be 
compared. 

The use of breaklines along the internal boundaries 
was critical for the calculation of the index. Breaklines 
prevent undesirable triangles to be created during TIN 
formation, which would lead to false calculation of the 
index. 

The results of the index are similar to the continuous 
coverage area too. The g index gets bigger values than 
these, in an area with no internal holes, but it follows a 
similar pattern, comparing the corresponding diagrams. 

Increasing the number of the sensors results in a 
reduction of the g index, which implies that the random 
triangle mesh is adjusted better to the equatorial 
triangle grid. 

For future work concave polygons and polygons 
buffer zones will be examined. 
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