
Automated Selection of Base Map Information from the Global Map David Forrest Department of Geography & Geomatics Centre for Geosciences UNIVERSITY of GLASGOW

Development of Cartographic Design Expert Systems Why - systems are capable of producing good maps, but offer little assistance to user in cartographic design

Question ◆ What topographic base information should be included in a particular map? - Part of map composition - Much neglected aspect of map design - Topographic features function as locational referents or "landmarks" - Some topographic information may be necessary to understand the topic information - Other information irrelevant / adds clutter

Selecting base information

- ♦ Need to know:
 - Map topic
 - Map scale
 - Level of detail required (purpose of use)
 - Map for overview or analysis?
 - User experienced or inexperienced
 - Probability of including different types of base info in that type of map (i.e. the knowledge base)

Previous work

- ◆ Cartographic Design Expert System modelled on the range of maps in a national educational atlas
 - Base scale 1:2 million
 - Target map scale 1:2M 1:15M
 - Generally successful in producing sensible maps on a range of topics at various scales & levels of detail

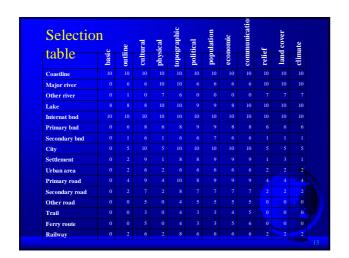
The Global Map

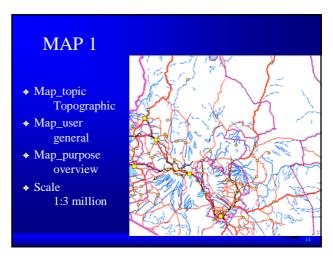
- ◆ Can the principles be applied using the Global Map as a source?
- Widespread availability of free data makes this an obvious target
- Previous data was structured specifically for the problem
 - Is the Global map appropriately structured?

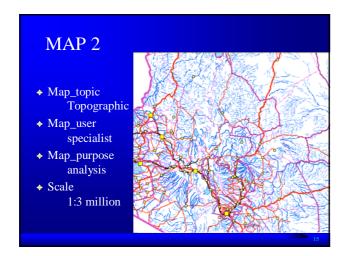
Global Map feature classes

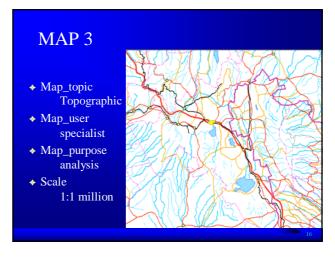
- Coastline
- ♦ Major rivers; other rivers; Inland water
- ◆ International boundary; Primary boundary; Secondary boundary
- Major towns (cities?); other settlements; Urban areas
- Primary route; Secondary route; other route; Trail
- ♦ Railroad; Ferry route
- ♦ Relief (not included here)

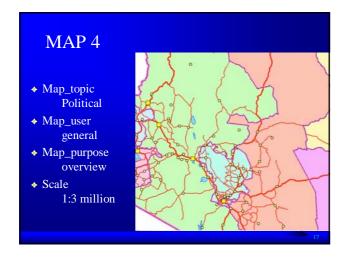
Core Map Topics • Physical

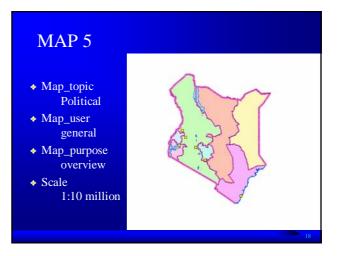

- ♦ Base map
 - Outline
 - Topographic
- Cultural
 - Political
 - Population
 - Economic
 - Communications




Building the knowledge base


- Various possible approaches
 - Introspection used for initial attempt
- ♦ Identify key map topics
- ◆ Score each feature class for importance to that topic
 - -10 =essential; 0 =not relevant
 - Build matrix / table of certainty values





Global Map Specification

- Global map has basic feature classes required
- ♦ Data dictionary not easy to use
 - How are field names and Value type/codes made easily useable?
 - Problem with value = 'unknown'
 - Often only distinction between features is name field

Data coding improvements

- ♦ OK for some themes (e.g. roads) not others
 - Need to process data first making assumptions
 - E.g. Named rivers = major, un-named = minor
 - No administrative rank for settlements problem
- ♦ To ease selection, themes should be hierarchically coded where appropriate
 - Major rivers, minor rivers;
 - National capitol, state capital, county town, ...
 - This would also help automate assignment of type style & name placement

Conclusion

- ♦ Responds to user's requirements
 - Default values depend on the situation
- Still needs to be implemented within a GIS
 - GIS don't support typical ES mechanisms
- ♦ It will:
 - make software (& data) easier to use
 - (help) stop people breaking the rules
 - reduce the number of bad map-like objects

Department of Geography & Geomatics ◆ BSc Geographic Information & Mapping Sciences

UNIVERSITY of GLASGOW

- MSc in Geoinformation Technology & Cartography
- PhD cartography, data quality, spatial modelling, 3D-GIS, GIS applications
- www.geog.gla.ac.uk

