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SUMMARY 
 
Carrier beat phase measurements of GPS are routinely used for precise positioning 
applications.  However, before any position can be computed, the carrier ambiguity which is 
an inherent part of these types of observations should be correctly resolved.  Otherwise, the 
computed positions are biased and their corresponding accuracies are drastically decreased.  
Ambiguity resolution is still a challenging problem in precise positioning applications.  
Finding a fast and reliable method for ambiguity resolution is notwithstanding an open area of 
research. 
 
Precise positioning computations using carrier beat phase observations usually involve three 
steps: 1. resolving ambiguities as float numbers, 2. assigning integer numbers to the resolved 
ambiguities (fixing ambiguities), and 3. testing the fixed ambiguities and computing accurate 
positions.  Researchers have introduced many different methods to resolve the ambiguities. 
However, LAMBDA (Least square AMBiguity Decorrelation Adjustment) is one of the most 
powerful ones used so far. 
This paper discusses the effects of observation weight matrix on ambiguity resolution using 
LAMBDA method.  Numerical results show that observation weight matrix has a direct effect 
on the accuracy of resolved float ambiguities.  Moreover, in the process of fixing ambiguities 
using LAMBDA method, observation weight matrix determines the dimension of search 
space but it has no direct effect on fixing the ambiguities.  Last but not least, it is shown that 
the result of adjustment using fixed ambiguities has not been much affected with the quality 
of the observation weight matrix unless it is unreasonably wrong.   
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1. INTRODUCTION 
 
Nowadays, GPS is used for many precise positioning applications.  To take advantage of GPS 
for precise positioning one should use carrier beat phase observations.  The inherent part of 
these measurements is the ambiguity which should be resolved before the observations can be 
used for computation of the coordinates.  The correct solution of ambiguities needs long and 
reliable observation set.  Many methods have been developed to resolve the ambiguities fast 
and reliable.  One of these methods is LAMBDA (Least square AMBiguity Decorrelation 
Adjustment) which takes advantage of decorrelating the ambiguities and solves them with a 
higher speed without reducing the reliability. 
 
The ambiguity resolution process starts with estimating the ambiguities as float numbers.  
Various algorithms have been developed to find out the integer ambiguities from the float 
solution.  Then the integer solution is tested.  Different tests are used to increase the reliability 
of ambiguity resolution.  If the test is passed, the integer ambiguities are used in the 
observation equations as known values.  Otherwise, one should either increase the length of 
observation, or somehow reduce the errors or biases and again solve for ambiguities. 
 
In this paper, carrier beat phase observation is reviewed.  Then the ambiguity resolution 
process and some of the available techniques including LAMBDA are briefly reviewed.  
Finally, the implemented algorithm as well as the results using different observation weight 
matrix are discussed. 
 
2. CARRIER PHASE 
 
Global Positioning System (GPS) provides the position of users using signals of four or more 
satellites.  The system was primarily designed of 24 satellites in 6 different orbits, but at 
present there are 30 satellites in the orbits (http://www.navcen.uscg.gov/).  The satellites 
transmit two C/A and P codes modulated on two L1 and L2 carriers (Bao, 2004).  The carrier 
beat phase observations are used for precise positioning applications.  In order to determine 
the distance between the receiver and satellite using carrier phase observations one should 
measure the number of carrier cycles.  However, the receivers are only able to measure the 
fraction of carrier cycle when the signals are locked.  Therefore, the integer cycles between 
the receiver and satellite which is called ambiguity should be determined.  Equation (1) shows 
this in mathematical language (Wells et al., 1987): 
 

0 0( ) ( , , ) ( )total Frac Int t t N tΦ = Φ + Φ +                                                                                           
(1) 
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where )(ΦFrac  is the fraction of carrier cycle which is measured in the receiver at the time 

0t when the signal is locked in the receiver, ),,( 0ttInt Φ  is the integer cycles which the 
receiver has counted between the time when the signal is locked and time t, )( 0tN  is the 
integer cycles of carrier, and totalΦ  is the total carrier phase between the satellite and receiver.  
The carrier beat phase observation equation is as following (El-Rabbany, 2002): 
 

ελρρ +++−−++=Φ NdddtdTcd tropion)(                                                                             
(2) 
 
where Φ  is the measured distance by the receiver, ρ  is the geometric distance between the 
satellite and receiver, ρd  is the orbital error, )( dtdTc −  is satellite’s and receiver’s clock 
errors, tropd  and iond  are the tropospheric and ionospheric errors, respectively, N  is the 
ambiguity, λ  is the wavelength, and ε  is the observation noise. 
 
Differential or relative positioning is used to reduce or eliminate the errors.  Differencing 
between receivers eliminates the satellite’s clock error while differencing between satellites 
eliminates the receiver’s clock error.  Generally speaking, orbital and atmospheric errors are 
reduced in differential positioning.  Double differencing is used for precise positioning 
applications (Teunissen, 1998).  Double differencing eliminates the satellite and receiver 
clock errors while reduces other ones.  The double differencing observation equation is as 
following (El-Rabbany, 2002): 
 

( ) ion tropd c dT dt d d Nρ ρ ε∆∇Φ = ∆∇ + ∆∇ + ∆∇ − ∆∇ − ∆∇ + ∆∇ + ∆∇ + ∆∇                                    
(3) 
 
Where "" ∇∆  is the notation for double differencing.   
 
3. AMBIGUITY RESOLUTION 
 
To reach a position with the accuracy of the order of centimeter in static mode or 10 
centimeter in kinematic mode it is necessary to solve the ambiguity.  Finding a fast and 
reliable method for ambiguity resolution is still an on going research topic.  Generally 
speaking, ambiguity resolution process consists of the following three steps (Liu, 2005): 
 
1. Finding the float solution.  In this step, the float ambiguities are estimated using the 
measurements.  This solution is good for applications which need an accuracy of order of 50 
cm or so.  Least Squares, Kalman filtering, and combination of code with carrier phase can be 
used in this step (Chen, 1994). 
2. Searching for integer ambiguities.  In this step, a search space is set based on the 
variances of the estimated float ambiguities.  Finding integer ambiguities among float ones is 
usually done based on minimum distance (Euclidian norm). 
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3. Testing the integer ambiguities to increase the reliability of the solution.  The test 
shows whether the integer solution is within an acceptable range of reliability or not.   
 
3.1 Float Solution of the Ambiguities 
 
In this paper, Least Squares is used for the float solution.  Least Squares is a linear estimator 
and for nonlinear models one should linearize it (Vanicek, 1986).  The linear model can be 
written as: 
 

wAxl +=                                                                                                                                         
(4) 
 
Where x  is the unknown vector, A  is the design matrix, l  is the observation vector and w  
is the misclosure vector.  The unknown vector in double differencing is: 
 

2 3[ ]base base base n
rov rov rov rov ref rov ref rov refx x y z N N N− − −

− − −= ∆∇ ∆∇ ∆∇L                                                                          
(5) 
 
where the first three unknowns are the coordinates of the rover and the rest are the differences 
of the ambiguities in differencing between satellites and receivers.  The design matrix can be 
written as:  
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where  
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and i
rovρ  is the geometric distance between the rover and satellite i, ),,( rovrovrov zyx  are the 

coordinates of the rover, and ),,( iii zyx  are the coordinates of the satellite i.  Moreover, the 
observation vector is as following: 
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where m

i
ref )(Φ  is the observed phase of satellite i in the reference receiver at epoch m, 

m
i
rov )(Φ  is the observed phase of satellite i in the rover receiver at epoch m.  The misclosure 

vector is also written as: 
 

),( 0 lxfw = .                                                                                                                                  
(9) 
 
The corrections to the approximate value of the unknowns, the estimates unknowns, and the 
variance-covariance of the estimates unknowns are computed using the following equations, 
respectively: 
 

wCAACAuN l
T

l
T 1111 )(ˆ −−−− −=−=δ                                                                                              

(10) 
δ̂ˆ 0 += xx                                                                                                                                     

(11) 
111

ˆ )( −−− == ACANC l
T

x                                                                                                               
(12) 
 
where lC  is the variance-covariance matrix of the observation, xC ˆ  is the variance-covariance 
matrix of the estimated unknowns and 0x  is the first approximation for the unknowns.  The 

sign ""
∧

 shows the estimated values.  Since the mathematical model of double differencing is 
nonlinear, the Least Squares solution is iterated until the solution converges to zero.  
 
3.2 Integer Solution of the Ambiguities 
 
The geometrical distance (Euclidian norm) between integer and float solutions is used to find 
out the integer solution.  In other words (Teunissen, 2000): 
 

))ˆ()ˆ((min 1
ˆ aaQaa a

T

a
−− −                                                                                                                    

(13) 
 
Where â  is the estimated float solution, a  is the possible integer solution, and aQ ˆ  is the 
variance-covariance of the estimated ambiguities.  Assuming that the ambiguities have normal 
distribution, the following relation has 2χ  distribution (Teunissen, 2000): 
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21
ˆ )ˆ()ˆ( χ≤−− − aaQaa a

T .                                                                                                                   
(14) 
 
This is nothing else but the equation for a multidimensional ellipsoid which determines the 
search space.  The values of the ambiguities determine the center of the multidimensional 
ellipsoid and their variance-covariance matrix defines the size of the search space.  As the 
correlation between the float ambiguities is high, one can not easily find the integer solution.  
LAMBDA uses conditional Least Squares and estimates the ambiguity based on the already 
estimated ambiguities. 
 
Equation (13) can be rewritten as following (Teunissen, 2000): 
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where 1−iia  is the estimated i th ambiguity based on the previous 1−i  estimated integer 

ambiguity,, and 2
1−iiδ  is the estimated variance of i th ambiguity based on the previous 1−i  

estimated integer ambiguity.  Therefore, the search space is as following (Teunissen, 2000): 
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(16) 
 
To increase the efficiency of the algorithm and reduce the number of candidates for the 
integer ambiguities in the search space without decreasing the reliability one can use the Z 
matrix as following to decorrelate the ambiguities (Teunissen, 1999): 
 

aZz T=                                                                                                                                         
(17) 

aZz T ˆˆ =                                                                                                                                        
(18) 

ZQZQ â
T

ẑ =                                                                                                                                     
(19) 
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where z  is the transformed integer ambiguities vector, ẑ  is the transformed float ambiguities 
vector, and ẑQ  is the variance-covariance matrix of the transformed float ambiguities. Using 
the above mentioned transformation one can rewrite the condition (13) as following: 
 

))ˆ()ˆ((min 1
ˆ zzQzz z

T

z
−− − .                                                                                                                   

(20) 
 
In other words, Z  transforms the search space to a new one in which the ambiguities are not 
correlated. 
 
3.3 Test 
 
Test is used to select the correct integer ambiguities among all of the possible integer 
ambiguities in the search space.  The pessimistic tests increase the time for ambiguity 
resolution and on the other hand, optimistic tests reduce the reliability (Weisenburger, 1997).  
Finding an efficient test is still an open research subject.  One of the most efficient ones which 
is used in this paper is the ratio test.  This test does not have any special confidence level and 
has the following form (Verhagen, 2004): 
 

threshold<
Ω
Ω

1

2                                                                                                                            

(21) 
 
where 1Ω  is the first shortest distance between the float and integer solution, 2Ω  is the next 
shortest one. 
 
4. IMPLEMENTATION 
 
For the purpose of experimentation two Leica 1230 dual frequency GPS receivers are used.  
The measurements to 6 satellites are collected for 10 minutes at the rate of 1 second in Tehran 
(Iran) at 10 AM local time.  To avoid errors a two-meter baseline is used.  In this paper, Least 
Squares is used for the float solution, LAMBDA is used for integer solution, the ratio test is 
used for testing the integer solution and again Least Squares is used for solving the unknown 
coordinates.  The algorithm is implemented in MatLab environment and the results are 
checked with GeoGenius 2000 and GPSurvey softwares. 
 
The purpose of this paper is to check the effect of observation weight matrix on the ambiguity 
resolution.  At the first step, the weight matrix is considered as the identity matrix.  In other 
words, it is assumed that all of the observations have similar weight.  In this case, the 
accuracy of the positioning using float solution is 165 mm.  After fixing the ambiguities using 
LAMBDA method, the positioning accuracy increases to 4 mm.  The integer solution is 
correct and the ratio test is passed with a threshold of 2. 
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At the second step, the weight of observations is considered as proportional to the altitude of 
the corresponding satellite.  In this case, the accuracy of positioning using float solution is 
130 mm.  After fixing the ambiguities, the positioning accuracy increases to 4 mm.  Similar to 
the previous case, the integer solution is correct and the ratio test is passed with a threshold of 
2. 
 
At the third step, the weight of observations is considered as proportional to different powers 
of the altitude of the corresponding satellite.  At this step, the effect of unreasonable weight 
matrix is studied.  Table (1) summarizes the results. 

 
Table 1: Effect of Weight Matrix on Ambiguity Resolution 

 
Weight Matrix Float Solution 

(mm) 
Integer Solution 

(mm) 
Test Result Ambiguity 

Resolution 
P I=  165 4 Pass Correct 

satP a=  130 4 Pass Correct 
2
satP a=  101 4 Pass Correct 
3
satP a=  80 4 Pass Correct 
4
satP a=  64 4 Fail Correct 
5
satP a=  54 5 Fail Correct 
6
satP a=  46 201 Fail Incorrect 
7
satP a=  38 203 Fail Incorrect 
8
satP a=  29 205 Fail Incorrect 
9
satP a=  18 208 Fail Incorrect 
10
satP a=  1 490 Fail Incorrect 
11
satP a=  18 486 Fail Incorrect 
12
satP a=  38 479 Fail Incorrect 
13
satP a=  53 471 Fail Incorrect 
14
satP a=  63 460 Fail Incorrect 
15
satP a=  68 450 Fail Incorrect 
30
satP a=  56 421 Fail Incorrect 

2 2
_sat Base satP a a= +  144 4 Pass Correct 

2 2
_sat Base satP a a= +  154 4 Pass Correct 
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5. CONCLUSIONS 
 
The result of this experimentation shows that the observation weight matrix has a direct effect 
on the accuracy of the positioning using float solution but has no effect on the positioning 
accuracy using integer solution.  Moreover, unless the observation weight matrix is 
unreasonably selected, the integer solution is correct.  Last but not least, it is seen that the 
ratio test is an efficient one as it fails when the integer solution is wrong and it passes when 
the solution is correct. 
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