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SUMMARY  
 
The need to monitor and document changes in observed scenes is an important application in 
many disciplines. Changes can appear in different scales, ranging from obvious changes, such 
as entire object being removed from or introduced to the scene, to barely noticeable ones such 
as object deformations. Image-based change detection methods utilize intensity data and 
image-processing techniques coupled with 3D point clouds based methods to detect changes 
in object-space, usually either by computing point-to-point differences or performing 
segmentation and classification of the data and detecting changes in objects. Nevertheless, 
these methods are only suitable for dense data and collapse when sparse data is used. Several 
photogrammetric methods have also been proposed for documentation of changes in various 
forms, but the stochastic nature of the observation is almost always ignored there. 
 
We present in this paper a surface based block-alignment model and its consequent 
application for change documentation from close-range images. Change-detection is based on 
outlier analysis method associated with geodetic network design and measurement. We 
discuss the application of proposed model for the documentation project of an archeological 
excavation site. Results show that the model applies well to close-range photogrammetry and 
can also be used for feature extraction. 
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1. INTRODUCTION 
 
The need to monitor and document changes in observed scenes is an important application in 
many disciplines. Changes can be in different scales, ranging from obvious changes, such as 
entire object being removed from or introduced to the scene, to barely noticeable changes 
such as object deformations. 
 
Reviewing the body of research that has been devoted for this topic shows its application in 
various fields. Image-based change detection methods utilize image intensity data and image 
processing techniques to detect changes. Intensity variation between images can be attributed 
to a number of factors such as illumination changes, camera movement and changes within 
the scene. Radke and Roysam (2005) review modern images based change detection 
algorithms that are applied as preprocessing steps in to filter “unimportant” changes while 
maintaining “significant” ones relating to actual changes in the scene. The authors present 
several illumination-invariant algorithms and statistical hypothesis test. However, in presence 
of changes in camera position, perspective changes prevent making image-based methods 
suitable. 
 
Change detection based on 3D point clouds is also an active field of research. Vu et al. (2004) 
propose an automatic method for airborne LiDAR-based change detection. A computation of 
differences between “pre” and “post” grids, based on LiDAR data is implemented, and 
potential changes are detected according to their distance from the mean value in a difference 
histogram. Vogtle and Steinle (2004) propose change detection methodology in urban area 
following disastrous events. Instead of computing simple DSM difference they use region 
growing and segmentation procedure to detect buildings, and then compare building 
parameters. Lindenbergh and Pfeifer (2005) present another segmentation based method using 
terrestrial laser scanner, after the segmentation test statistics are used to detect changes. These 
methods make use of dense 3D point clouds associated with LiDAR and do not apply to 
photogrammetric data which are sparse by nature. 
 
Ladstaedter and Kaufman (2004) present a change detection of a mountain slope based on 
terrestrial photogrammetry. The authors subtract DTMs extracted form images acquired from 
a fixed position at multiple epochs. Habib et al. (2001) present a surface-matching based 
change detection method based on a point-to-surface registration of two datasets which is 
suitable for use with sparse data. Points which do not correspond to the surface after the 
registration are declared as changes. Both methods ignore the stochastic nature of 
photogrammetric observations and process.  
 
The application of terrestrial photogrammetry for site documentation, measurement and 
reconstruction is widely known. This is due to the ease of data collection, availability of 
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imaging devices, ability to avoid coming into physical contact with the mapped objects, and 
the existence of well established photogrammetric methodologies for the documentation. 
Therefore, photogrammetry can be considered optimal for change-detection, where multiple 
campaigns are needed. When datasets are collected at different epochs, point-to-point 
correspondence between them cannot be assumed (and usually does not exist). Therefore 
point-based photogrammetry is not suitable for change-detection purpose. Surface-based 
photogrammetry, first introduced by Ebner and Strunz (1988), does not assume point-to-point 
correspondence and is suitable for use in change detection. Ebner and Ohlhof (1994), Jaw 
(2000) and Schenk (2000) also presented variations for surface-based photogrammetry. 
 
We present in this paper a surface based block-alignment model and its consequent 
application for change documentation from closer-range images. The change-detection is 
based on outlier detection method associated with geodetic network design and measurement. 
We discuss the application of proposed model for the documentation project of an 
archeological excavation site. Results show that the model performs well for change-detection 
based on close-range photogrammetry, and can also be used for feature extraction. 
 
2. SURFACE-BASED CHANGE DETECTION MODEL 
 
The objective of the proposed model is to develop a method for detecting changes between 
two photogrammetric derived data points depicting the same site, based on image data that 
was acquired in different epochs. In addition, it has to account for the sparse data and 
resolution differences associated with photogrammetry in general and close-range 
photogrammetry in particular. Since change-detection requires both datasets to be in the same 
reference-frame the model is also required to handle registration of the datasets. 
 
The model is based on surface-based photogrammetric registration solution utilizing outlier 
detection methods to identify changes between epochs. Outlier detection is first discussed, 
flowed by presentation of the registration model and the proposed change-detection scheme. 
 
2.1 Outlier detection 
 
Geodetic networks use outlier detection methods in order to screen gross errors and as means 
of deformation analysis. Outliers are defined as observations which do not agree with a 
model. There are several methods for detection of outliers associated with least-squares 
estimation. The common ones used in geodetic-networks are Baarda’s Data-snooping 
(Baarda, 1968), Tau-test and Danish method (Berberan, 1992). 
 
Data-snooping is rooted in probability theory and utilizes hypothesis tests. The null 
hypothesis is that no outliers exist, and the alternative hypothesis is that only one gross error 
exists. However, in practice this method allows for detection of multiple outliers in an 
iterative manner. It is based on the assumption that the a priori standard deviation (std.) of a 
unit-weight observation σ0 is known, and is used to calculate the standard deviation of the 
residuals. Normalized residuals ui are then calculated and used as  
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with vi the residual of the ith observation and qvivi the element in the cofactor matrix of the 
observation corresponding to that observation. ui is used as the test value for the hypothesis 
test, with uα0 the critical value (usually taken from nomograms). If the test value exceeds the 
critical value the corresponding observation is considered an outlier and is discarded from the 
dataset. Only a single outlier can be detected at a time. 
 
The Tau-test method is similar to data snooping, but does not assume that σ0 is known. The a 
posteriori std. 0σ̂ is used to calculate the normalized residuals and to be used as test value Ti 
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with t the t-distribution value and f the degrees of freedom. Similar to Baarda's test, if the test 
value exceeds the critical value the corresponding observation is considered as an outlier and 
is discarded from the dataset. Only a single outlier can be detected at a time. 
 
Both data-snooping and the tau-test assume that only one outlier exists, and their underlying 
theoretical foundations do not apply if there is more than one outlier. While practically 
multiple outliers can be iteratively detected, one at a time, these methods are unsuitable for 
detection of multiple outliers as in the case of change-detection. 
 
Robust estimation methods for outlier detection are purely heuristic, making no assumption 
about the stochastic nature of the observations. These methods are founded on the idea that 
large residuals indicate less accurate observations and vice-versa. Therefore, after performing 
the least-squares estimation, the a priori weights of the observation are replaced with 
functions of the residuals and the model is estimated again. This process is carried iteratively 
until convergence of the weights. Several reweighting function exist. The one applied by the 
Danish method is 
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with ν = 1,2,… the iteration number, pν the weight on the νth iteration, ui

D the normalized 
residual (p1 is the weight of the observation at the first iteration), and c a critical value which 
is usually in the range of 2-3. After the model converges all residuals with a value greater than 
a given threshold are considered outliers. At this time two options are available. The first 
option is deleting outlying observations from the dataset and the model solving the model 
without them. The second is using the final estimation of the Danish method, since the final 
weights of the outliers should be close to zero and so they would not affect the quality of the 
solution. 
 
Huber (1981) proposes a different reweigthing function 
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It should be noted that for the underlying assumption for the robust estimation methods to 
hold true, i.e., large residuals indicate less accurate observations; an estimation model with 
high-internal reliability should be used. Such models are characterized by high redundancy 
numbers, meaning that most of the observations error is absorbed in its respective residual. 
 
2.2 Surface-based photogrammetry registration model 
 
Surface-based photogrammetry cannot provide single-photo solutions (contrary to point and 
line based methods), and require at least two images. This suggests that photogrammetric-
based registration of the datasets has to have some notion of 3D to 3D relation. Such relation 
translates into the registration of 3D datasets, which in photogrammetry relates to an absolute 
orientation problem. The need to determine 3D coordinates necessitates the extraction of 
homologous point from the images. Reliable change-detection requires a dense 
photogrammetric dataset, and surface-based registration greatly benefit from such dense 
datasets, therefore an autonomous methods for the extraction of homologous points are 
desirable.  
 
2.2.1 Homologous point extraction 
 
Several algorithms exist for extraction of homologous points in an image set, cross-
correlation and least-squares matching to name a few (Schenk, 2000). These methods work 
well for generation of rapid 3D dataset when no substantial change exists within the imageset, 
such as can be found in aerial photogrammetry setups and stereo-pairs. However, when 
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substantial perspective changes exist between the images, such as can be found in close-range 
photogrammetry, these methods fail to produce reliable datasets. The Scale-Invariant-Feature-
Transform (SIFT) (Lowe, 2004) method is designed to be invariant to scale, rotation, and 
illumination, and for practical use is invariant to sufficient amount perspective changes. The 
methodology consists of: i) detection of candidate interest points via scale-space extrema 
search, ii) localization of the keypoints, iii) orientation assignment based on the image local 
gradient to ensure scale and orientation invariance, and iv) descriptor computation. For each 
detected keypoint a descriptor which is invariant to scale, rotation and changes in 
illumination, is generated. The descriptor is based on orientation histograms in the appropriate 
scale. Each descriptor consists of 128 values. 
 
The extraction of candidate counterpart points is vital in the present case for two purposes: the 
first is the establishment of the relative orientation between image pairs, and the second is 
launching the point-to-surface registration model. These two goals have two different 
objectives, the first is obtaining a reliable set of points for orientation where the focus is on 
their quality, and the second is obtaining a detailed surface model, with focus on quality but 
also on their quantity. In this regards, the ability to control the amount of keypoints extracted 
by the SIFT model provides an excellent and efficient means for the provision of large set of 
potential 3D points. Therefore, the counterpart extraction process is applied here in two parts.  
 
For the relative orientation, a high filtering threshold is set, so that only a marginal number of 
outliers result. Considering the fact that for the computation of the relative orientation only 
five points are required, setting a high threshold still provides a great number of degrees of 
freedom than what is customary to use.  
 
The computed relative orientation also defines the geometrical locus where all candidate 
counterparts of a given point can be found. Therefore, for second phase that concerns 
describing the surface, the initial filtering threshold value for potential corresponding points is 
decreased. Matches are not only evaluated by their descriptor similarity, but also by their 
proximity to the epipolar line in the second image. Proximity is computed by the image 
distance between a point and the epipolar line it is expected to lie on. Points whose distances 
exceed a certain threshold value are discarded. The distance is a function of the accuracy of 
the estimation of the relative orientation. Notice that outlying matches that lie along epipolar 
lines cannot be detected and will be identified as changes in by the change-detection scheme. 

2.2.2 Surface-based registration model 
 
With the extraction of 3D pointsets a registration model is presented. The goal of the 
registration is align the datasets from different epochs while enabling easy identification of 
outlying observations. Registration of 3D datasets requires relating entities between both 
datasets. Besl and McKay (1992) propose computing a rigid-body transformation in an 
iterative fashion by updating correspondence. Convergence is reached when the actual 
matches are found. Chen and Medioni (1992) proposed a point-to-surface registration scheme 
for determining the rigid body transformation. Parameters are based on minimizing the sum of 
square-distances between a pointset and a surface. Grün and Akca (2005) add a scale factor to 
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the algorithm. In order to accommodate the needs of close-range photogrammetry surface-
based registration (i.e. occlusions and varying scale and resolution) a point-to-surface model, 
one epoch’s data are represented as a pointset, and the other epoch’s data as a surface-model. 
This representation assumes no correspondence between the datasets and therefore suitable 
for change-detection. The alignment of the datasets is done by determining the similarity 
transformation between the coordinate systems of both epochs. Similarity transformation is 
defined 
 

( )'m= ⋅ ⋅ −p R p t  (6) 
 
with p’ a point in the first (point) epoch coordinate system, p a point in the second (surface) 
epoch coordinate system, t the translation between the two systems, R the orthonormal 
rotation matrix, and m the scale factor. 
 
The common surface models are usually provided either in the form of a regular-grid or by a 
set of irregularly distributed points. For the latter case the triangular-irregular-network (TIN) 
is usually established as a surface representation. Regular grids are easy to generate, 
manipulate, and access, however they are limited to 2.5D and by nature limited to work with 
regular data. The TIN representation is more general than the regular grid model, more 
flexible, and can be employed to a full 3D model as well. The common use of TIN 
representation and its greater flexibility motivate the formulation of the solution with this 
representation. 
 
The local surface patches in the TIN, defined by the three triangle vertices, are considered 
planar. The point-to-plane distance δi can then be written in vector form is 
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with ni = [ni

x, ni
y, ni

z,]T the normalized (unit length) normal vector to the plane defined by 
triangle ti, di the plane constant, and pi= [xi, yi, zi]. Linking Eq. (6) and Eq. (7) leads to 
 

0'T T
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The origin of both coordinate systems – the point and the surface ones, are transformed to 
their respective centroids. The quantities in Eq. (8) can be categorized as belonging into 
unknowns and observations. s= [tx, ty, tz, m, ω, φ, κ]T is the vector of unknown transformation 
parameters,  p’ is the observation for the point epoch  n and d are the observations for the 
surface epoch, and δ is the observation for the difference between the two epochs. A strong 
dependency exists between p’ and [n, d] through δ. Modeling this dependency is not practical, 
and since the interest of the registration model is to estimate the differences between the 
datasets (δ) p’, n, and d are considered as constants.  Eq. (8) is non-linear, so in order to 
perform a least-squares estimation, linearization using Taylor series expansion leads to 
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with s the differential correction to the initial transformation parameters approximations, and 
vδ  the residuals of the distance observations, and 
 

( ) ( ), , , ,
; p

f T f T

δ
∂ ∂

= =
∂ ∂

= −S p S p
A B

S
I  

 
The least-squares target function becomes then  
 

( ) min2T T T
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with Pδ  the weight matrix for the observations, Ps the weight matrix for the initial values of 
the unknowns, and k the vector of Lagrange multipliers. Unless prior knowledge about the 
relation between the two datasets exists Ps usually set to zero. Solving Eq. (10) leads to 
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with T

sδ= +N A P A P . The a posteriori variance is given by 
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with n the number of condition equations (equals to the number photogrammetric model 
points), and u the number of transformation parameters (seven here).  
 
The initial assumption of the registration procedure is that there are no changes between 
epochs so that all observations are inliers. This is assumption is parallel to the null hypothesis 
is hypothesis tests. Since both datasets represent the same object the value of δ is set to zero. 
Setting the values in the weight matrices will be discussed in section  2.3. 
 
The model was extensively tested in various simulated and real world setups and showed that 
redundancy numbers in the presented model are in the range of 0.7-0.9. These are 
exceptionally high, and well suited for detection of outliers as mentioned in section  2.1. 

The discrete, piecewise, representation of the surface by the TIN model requires establishing 
correspondence between the points and the triangles. The model defines that a point is related 
to a triangle if: i) the point is inside the triangle – a vector from the point to the triangle, with 
direction parallel to the normal to the triangle plane, intersect the triangle plane inside of it, 
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and ii) the distance between the point and the triangle plane is the minimum with respect to all 
triangles that answer condition (i). 
 
2.3 Change-detection scheme 
 
Aiming for a method that can handle within the entire dataset, simultaneously, data-snooping 
and the tau-test that seek only one outlier within a dataset are discarded and the robust 
estimation method is applied. The procedure follows the next scheme: 

1. Setting initial weights in Pδ
0. 

2. Solving the registration model with the current Pδ
ν (with ν the iteration number). 

3. Calculating new weights according to Eq.(4) and setting Pδ
ν +1. c is set at the range of 1.5-

3, depending on the quality of the data. 

4. If Pδ
ν +1 differ from Pδ

ν +1 go to stage 2.  

5. Declare all observation with residual higher than a threshold value as changes.  

 
The initial values in Pδ

0 are set according to the expected accuracy of the 3D points 
reconstructed from the photogrammetric models and generally should be close to unity. Areas 
in the datasets (both epochs) with questionable accuracy or reliability should yield lower 
weights, which should be taken in account in the final stage of the procedure. It is noted that 
for the change-detection itself estimation of the registration parameters ŝ  is not necessary and 
so Eqs.(11) and (12) can be combined to 
 

 ( )1 T
δ δ

−= − +v AN A P I w  (14) 

 
In the final step, when declaring changes, one should take in account observation with initial 
low weights. These will inherently have large residuals regardless. If these initial weights are 
below a threshold value (the weight corresponding to the residual size ( 2 2

0
ˆ /critical criticalp vσ= ) for 

declaring changes, these observation should be flagged as suspicious and might indicate gross 
errors during their 3D reconstruction phase. 

3. RESULTS AND DISCUSSION 
 
The application of the proposed model is demonstrated on a documentation project in Raqefet 
cave, an archeological excavation site in the Carmel mountain ridge, as part of an ongoing 
research studying the origins and use of Manmade-bedrock-holes in those sites. An 
excavation campaign performed on August 2008 serves as the case study for this paper. The 
study is performed at a small area of ~10 m2. Images were acquired during the excavation 
with a Nikon D70 camera, with 48 mm Nikkor lens. 
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Figure 1.  The image-pair for the first epoch. (a) is the left image and (b) is the right image. Homologous points 
extracted using the SIFT algorithm are marked by red points. 

 
For the point epoch two images were acquired with base length of ~1.5 m and convergence 
angle of ~25o. Applying the SIFT algorithm on the image set resulted in a set of 913 points 
that were autonomously extracted. Among them 101 points have passed the high threshold 
filtering stage (threshold was set to 4) and the rest where found corresponding by limiting the 
search to the epipolar line locus. Of the 101 points that were used for the relative orientation 
phase none were outliers. Similar results were observed in other stereo-pairs on which the 
keypoint extraction model was applied. The set of homologous points are presented in Figure 
1, while being marked on the images. The extraction accuracy was ~1.5 pixels and the 3D 
reconstruction accuracy was 0.5 cm. The dataset of this epoch is represented as a pointset. 
After several artifacts were removed the site was mapped again for the surface epoch, which 
data is represented as a TIN surface-model. Both datasets were independently geo-referenced 
for future inspection. 
 
At this point, with datasets corresponding to two epochs the registration and change-detection 
scheme is performed. Although both datasets are geo-referenced, and therefore their relative 
pose and orientation can be computed, the seven similarity transformation parameters are 
treated as unknowns and their weight matrix Ps is set to zero. The initial weight matrix for the 
observation Pδ

0 is set as an identity matrix. Danish method is used of reweighting and the 
critical value is set to c = 2 and. The weight critical value for declaring a change is set to 
pcritical = 0.1, which correspond to a critical residual value of 3σ0. The objects that were 
removed from the site between the epochs are shown highlighted in Figure 2a. while Figure 
2b. shows the results of the change-detection procedure on one of the images. Changes that 
were detected are indicated by green points, changes that are no detected by yellow points and 
red points indicate points that were falsely detected as changes. Sixty seven points were 
manually identified as part of a removed object and thus should be identified as changes. 
Sixty four of those points (96%) were successfully identified and only three were not. All the 
unidentified points were sampled close to ground and therefore are not considered as change. 
Six points which were not part of a removed object was identified as changes. 
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Figure 2. The changes between epochs were manually detected and highlighted in (a). (b) shows the results of 
the change-detection procedure. Green points indicated successful change detection, yellow indicate changes 
which were not detected, and red indicate false detections. 

Error! Reference source not found.a. shows the behaviour of the weight matrix Pδ 
throughout the iterations.  The mean weights for observations inside and outside of the change 
area, indicated by solid red and blue lines respectively, clearly show convergence of the 
detection procedure at the sixth iteration. The dashed black line indicates the critical weight 
Pcritical = 0.1. Setting higher values for the critical value c in the re-weighting step (c=2 here) 
will yield faster convergence, but may lead to more false detections. The dashed blue line 
indicates the minimal weights for observation in non-changing areas of the site. At the point 
of convergence the red and dashed-blue lines are practically cannot be separated. This is do to 
the rapid convergence of the exponent function used for weighting used by Danish method.  
 
3.1 Use for object extraction 
 
It is noted that the same procedure used for change-detection can be used, with slight 
modification, for feature extraction. In the change-detection model the datasets are defined 
temporally according to their acquisition epoch. Applying the same model on a coarse 
surface-model of site terrain and an unclassified pointset, containing both terrain and objects, 
will result in detecting points outlying with respect to the surface-model, thus classify them as 
objects or new details. 

4. CONCLUSIONS 
 
This paper has demonstrated the utilization of surface-based photogrammetry as a basis for a 
robust-estimation change detection model. It has shown how combining the two allow for fast 
and reliable change-detection in close-range scenes, detecting almost all the changes while 
making only a marginal number of false detections. The use of registration model for change-
detection relieves the need for establishing control network, and the use of a surface based 
model relives the need of identifying corresponding points in the image set. Such models are 
useful for the documentation changes in various sites with no need to access the site. 
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