

3

- Global mean sea level rise will accelerate during the 21st century in response to ocean thermal expansion and glaciers/ice sheet melting (Church et al. 2013).
- Sea level rise causes physical impacts such as permanent/temporal inundations (including floods), coastal erosion, destructive storms, and saltwater intrusion.
- It is essential to monitor sea level changes and its impacts on coastal communications.
- Coastal zones have changed progressively along the history with urbanization, populations, economies, etc.

• From satellite altimetry and tide-gauges data.

Altimetric data sets:

- All-sat-merged MSLA gridded data in delayed time (from AVISO).
- Daily data at 0.125° x 0.125° grids.
- Time span: from 1 January 1993 to 31 May 2014.
- Reference period : 1993 2012.

THE BLA	CK SEA I	MEAN SEA	LEVEL
ide-gauge me :oast better.	easurements	reflect the vario	itions particular
hree tide-gau ermanent Serv	ge stations vice for Mea	having long-teri n Sea Level (PSM:	m data from [.] SL).
hree tide-gau ermanent Serv Tide-gauge station	ge stations vice for Mean Country	having long-teri n Sea Level (PSM: Time-span	m data from SL). Trend (mm/year
hree tide-gau Permanent Serv Tide-gauge station Batumi	ge stations rice for Mean Country Georgia	having long-tern n Sea Level (PSM) Time-span 1882 - 2013	m data from . SL). Trend (mm/year 1.97±0.08
hree tide-gau ermanent Serv Tide-gauge station Batumi Poti	ge stations rice for Mean Country Georgia Georgia	having long-tern n Sea Level (PSM) Time-span 1882 – 2013 1874 – 2013	m data from SL). Trend (mm/year 1.97 ± 0.08 6.65 ± 0.07

