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 A new geoid-based reference surface (N) for physical heights (H) adopted 
in Canada in November 2013
• Use GPS/GNSS ellipsoidal height (h) and N to obtain H

 The one centimetre-level geoid error requires the time variation of it be 
accounted for on a decadal time scale. 

 The crustal motion should also be accounted for on a shorter time scale so 
that the equation H = h - N holds both in space and time.

 Why the Great Lakes region?
• Glacial isostatic adjustment of the crust and geoid
• Line of zero motion, an important constraint for geodynamic modelling
• Concentration of geodetic control stations (CGPS and EGPS data)



 Objectives

 Data sets
• GRACE vertical motion rates
• Filtering effects on GRACE rates
• GPS vertical crustal velocities 
• Overview of the errors of the two data sets

 Least-squares adjustment model

 Analysis of the combined vertical motion surface

 Discussion
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 Combine optimally the available heterogeneous vertical crustal motion 
data

 Calibrate data variance-covariance matrices

 Assess whether the GRACE and GPS vertical velocities converge

OBJECTIVES



 144 months of CRS RL05 GRACE data (April 2002 to August 2015)

 The mean field is subtracted from the time series

 GLDAS hydrology model correction 

 De-striping filter and isotropic smoothing (a 400 km filter radius)

 Vertical rates of crustal motion calculated by a second isotropic filter 
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GRACE VERTICAL MOTION RATES



GIA model: ICE-6G_C (VM5a) by Peltier et al.
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GRACE model 1 (UofC)



GRACE model 2 (UofC)



 71 GPS points (IGb00) in both Canada and USA
• Sella et al., (2007): 57 CGPS and 14 EGPS stations (Canada)

GPS VERTICAL VELOCITIES



 Long-wavelength errors in the GRACE data 

• Geophysical signals leakage and hydrology model errors

 Distortions of the GRACE-derived vertical motion surface 

• introduced by the de-striping and smoothing filters

 Different reference epochs and time span of data series

 Scale factors of variance-covariance (VC) matrices not known

 The GRACE vertical motion VC matrix is fully populated

OVERVIEW OF DATA ERRORS



Parametric Model

LS Adjustment Model

Stochastic Model
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Iterative LS procedure
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Computation of weights
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Method Bias NS tilt EW tilt

Least-squares adjustment 2.10 ± 0.10 0.12 ± 0.07 0.04 ± 0.04
Iterative re-weighting 

least-squares 2.06 ± 0.15 0.09 ± 0.07 0.04 ± 0.04 

Estimated GRACE data bias in mm/yr and tilt in mm/yr/deg 



Data set Min Max Mean
A priori errors

GRACE 0.6 0.6 0.6
GPS 0.5 5.3 2.0

Least-squares adjustment
GRACE 0.2 0.2 0.2

GPS 0.4 4.2 1.7
Iterative re-weighting least-squares

GRACE 0.5 0.8 0.6
GPS 0.3 4.1 1.3

Statistics of the a-posteriori errors of GRACE and GPS velocities in mm/yr



The LSA vertical motion surface with the a-priori (black) and 
a-posteriori (red) errors of the GPS vertical velocities.

mm/yr error



The IRLS vertical motion surface with the a-priori (black) and 
a-posteriori (red) errors of the GPS vertical velocities.

mm/yr error



 The line of zero motion in the lakes area is well constrained by the 
geodetic observations. 

 If outliers are present in the data, these data points are down-weighted 
and preserved in the optimal combination

• Baarda’s data snooping can test a good observation as an outlier or may fail to 
detect a single outlier in peripheral areas with less data constraints.  

• The pattern of vertical motion surface could change globally because base functions 
are global.

• IRLS keeps more data constraints in the peripheral areas. 

DISCUSSION



 The increased time span of the GRACE mission has lead to vertical 
motion rates that converge to GPS velocities

• The estimated GRACE bias has decreased by 2 mm/yr due to the additional 5 years 
of data since the previous study.

• GRACE tilt became less significant
o NW tilt: -0.21±0.08 (8 years of data)

o NW tilt: 0.12 ± 0.07 (13 years of data)

• The spread of residuals decreased
o GRACE: from ±0.4 mm/yr to ±0.2 mm/yr 

o GPS: from ±1.5 mm/yr to ±1.3 mm/yr 

DISCUSSION
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