Training in Masping Changes on an Archaeological Site

FIG 2018

Pierre-Yves Gilliéron Bertrand Merminod Jérôme Zufferey

semen at the FIG Congre

FIG Com 2 – Professional Education

Agenda

- EPFL Swiss Federal Institute of Technology
- ENAC School "projeter ensemble"
- Archaeological site
 - Surveying
 - Mapping Changes
- Conclusions

Ecole Polytechnique Fédérale de Lausanne

- Swiss Federal Institute of Technology = ETH Zürich + EPF Lausanne + dedicated labs.
- 13 study progr.
 350 research labs
 ~10k students

ENAC School – Projeter ensemble

- ENAC: School of Architecture, Civil and Environmental Engineering
 - 3 institutes/sections (AR, GC, ENV)
 - ~70 faculty members
 - ~700 employees (professors, researchers, admin)
 - 1200 students (Bs, Ms)
 - 300 PhD students
- Concept *projeter ensemble* (design & build together)
 - To promote **the interdisciplinary approach** trough teaching activity: from joint courses to common projects.

ENAC School – Projeter ensemble

- Projeter ensemble includes:
 - Interdisciplinary courses from ENAC
 - □ architecture, civil & environmental engineering
 - pedagogical approach based on a mix of competences (students & teachers)
 - relevant topics: land management, transport & mobility, urban design, natural hazards, energy, ...
 - team of teachers from 3 sections (AR, GC, ENV)
 - Mixed classes of students
- Opportunity to work together and to share knowledge

ENAC week – 2nd year

ENAC - Teaching Unit - 3rd year, spring

- Focus on Teaching Unit
 - Weekly workshop (1/2 day/week) during one semestre
 - 2 3 teachers
 - Class of 15 to 25 students (balance between Archi. & Eng.)
- Combination of theory (concept) and practice (field, lab)
- List of topics proposed to students
 - Visualising future cities, architecture & solar energy, urban management in the South, mapping urban history, urban disctricts and sustainable management, ...
- Our topic: Geotechnologies for mapping changes

ENAC - Teaching Unit

Geotechnologies for mapping changes

- Objective: to study and to evaluate changes at different scales
 - part of a structure, small construction
 - building, bridge, archaeological site
 - territory, urban area, biotope
- The approach
 - Studying and understanding the «object»
 - Collecting appropriate data, capturing information
 - Analysis, visualisation and mapping

ENAC - Teaching Unit

Geotechnologies for mapping changes

- Measurement of structural deformation (beam), data processing and geometrical features analysis
- Surveying of a building with laser techniques, data processing, 3D modelling and 2D drawing (CAD), comparison with old maps
- Mapping of landscape changes based on remote sensing data at different epochs

50

Teaching Unit – Archaeological Site

- Antique Theatre of Aventicum terrestrial and aerial mapping
- Objectives
 - To combine different sources of data.
 - To model a non-conventional built object.
 - To visualise a complex environment.

Teaching Unit – Archaeological Site

Antique Theatre: Avenches (CH)

Restoration of the site (2012-2017)

Archaeological Site: Data Acquisition

Terrestrial laser scanning: capturing 3D point clouds Total station: surveying of Ground Control Points

Archaeological Site: Data Acquisition

photogrammetry

Mapping with drones: overview of Avenches

Archaeological Site: Data Acquisition

Terrestrial laser scanning: raw point clouds

Mapping with drones

Archaeological Site

- Modelling
 - Creation of 3D models based on PC
 - Extraction of profiles
 - 2D drawing
 - PC based comparison between epochs

PC: Point Cloud

Archaeological Site - Modelling

- 3D point clouds
- Digital surface model
- All the objects above ground are removed before extracting a mesh model.

Archaeological Site – Modelling

3D Mesh Model

Archaeological Site – Mapping of Changes

Archaeological Site – Mapping of Changes

- Height differences between 2010 and 2014
- Comparison of point clouds, erosion of steps

Mapping of Changes

- Restoration
 - Comp. 2010-2016
 - new masonry (light brown)

dark red or blue means "big change", e.g. reconstruction

Combined model: 2010 (white) - 2016 (brown)

Visualisation of changes: before (2010) and after restoration (2016)

Conclusions

Benefits of the teaching unit

- Increase in motivation, strong implication of students
- Practical work: necessity to ask appropriate questions
 - Combining approaches towards a common objective.
- Power of Mapping
 - From field observation to visualisation from raw data to information
 - Data capture is easy.
 - Extracting the relevant information is another story.
 - Students had to think about the best way to compare epochs and to map the outcome.

Many thanks for your attention !

Questions?

Laboratoire de Topométrie bertrand.merminod@epfl.ch

