

Current Landscape of Spatial Decision Support Systems (SDSS) and Software **Applications for Earthquake Disaster Management in Turkey**

Penjani Hopkins NYIMBILI, Turan ERDEN ul Technical University, Turkey

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT: ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

MAIN SUPPORTERS

PLATINUM SPONSORS

Geosystems

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Presentation Outline

- Introduction
- Overview and Principle of SDSS
- SDSS for Earthquake DEM
- Categories of SDSSs
- SDSS usage and experience in Turkey

PLATINUM SPONSORS

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Introduction: Earthquake Disasters in Turkey

- Most recent, Mw > 7:
- 1999 Kocaeli/Duzce
- 2011/2 Van, 604 lives

Strimble.

ORGANISED BY

MAIN SUPPORTERS

PLATINUM SPONSORS

/I FIG Congress 2018

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Introduction: What is the Role of GIS?

- GIS, powerful analysis tool:
- each phase is geographically and spatially inter-related
- supports decision-making process
- Phases of DEM cycle:

 - preparedness
 mitigation pre-disaster
 - response during (co-) disaster
 - recovery post-disaster

= Rapidness, is key!!

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

What is an SDSS? Principle and aim of SDSS

- SDSS decision support systems that aid and improve the quality of decision-making by quantitative approaches using GIS
 SDSS, is composed of:
 - spatial database system
 - decision model predicting decision outcomes
 graphical user interface (GUI) output display
- <u>SDSS aim</u>: providing enhanced support for disaster decisionmaking and risk management

PLATINUM SPONSORS

Strimble Strimble

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Categories of SDSS for Earthquakes: Global SDSS

SDSS	Region	Platform	Data categories	Essential	district	Outputs	
				features			
SELENA, DBELA, Emergeo/ NHEMATIS, CATS,	Europe, Worldwide	ESRI ArcGIS Google UML	Socio-economic, demographic, topography, soil, geology, building inventory, lifelines	Earthquake, hazards – tsunami, fire		GIS graphic display of predicted losses – building, damage, injury maps, hazard maps, dynamic maps, socio-economic loss estimation reports	
OpenRisk			Scenario or sim	ulation-based,	User-friend	ly interface	
HAZTURK	Turkey, Worldwide	ESRI	Socio-economic, geology, topography, building inventory	Earthquake		Hazard maps for earthquake spectral acceleration, PGA, PGV	
			Scenario or sim	ulation-based,	User-friend	ly interface	
OpenQuake, GDACS, PAGER, QLARM	Europe, Worldwide	Web-based GIS	Socio-economic, demographic, soil, hazard information, vulnerability, building	Earthquake		Maps, alerts, shake maps, population exposure and risk maps, google earth maps/ map data files, risk analysis reports	
	Early warning systems (EWS), User-friendly interface						
ORGANISED BY	FIG		MAIN SUPPORTERS	SEHIRCILIK	adastro	PLATINUM SPONSORS STATE SCALARCE OF WHERE THE SCALARCE OF WHERE GEOSYSTEMS	

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Categories of SDSS for Earthquakes: e.g. SELENA

input and inventory data

- output results

Principle flowchart of analysis using SELENA software

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Categories of SDSS for Earthquakes: Regional SDSS

SDSS	Region	Platform	Data categories	Essential distric features	t Outputs		
ELER, SIGE/ESPAS, LNECLOSS, QuakeIST	Europe	ESRI ArcGIS Google	Socio-economic, demographic, building/facility, lifelines	Earthquake	Loss maps, rapid earthquake damage and casualty estimates, statistical GIS/GPS/GPRS maps, reports, lifelines/facility		
KOERILoss	Turkey, Europe	MapInfo GIS	Socio-economic, demographic, building	Earthquake	GIS display of building damage, socio-economic losses		
HAZUS-MH, Maevis, EPEDAT	USA	ESRI ArcGIS	Socio-economic, population, demographic, building inventory, bridges and gas network	Earthquake, flood, tropical storm, fire	Loss maps, damage, socio-economic loss reports/analysis, gas networks		
READY, SUPREME	Japan	GIS	City gas network, building, strong motion accelograph networks	Earthquake	Earthquake risk analysis, seismic intensity maps of damage assessment and locations		
	Scenario or simulation-based, User-friendly interface						
IERREWS, IGDAS	Turkey	GIS	Strong motion and natural gas pipeline network, socio-economic, demographic, building, near-real time <i>Earthquake</i> hazard data, soil and seismotonic database		Loss and shake maps, damage distribution maps in natural gas infrastructure and building stock		
			Early warning systems	s (EWS), User-friendly	interface		
					LATINE M. CRONEODE		
ORGANISED BY	IG 🧲	M M	AIN SUPPORTERS	pu ve Kadastro	esri Leica Strimble.		

Geosystems

THE SCIENCE OF WHERE

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Categories of SDSS for Earthquakes: e.g. ELER

	LEVEL O	LEVEL 1	LEVEL 2	
HAZARD (Shake-map)	Intensity Map (Point Source/Extended Source based on Seismotectonic Database + Observed GM values + Vs30	Intensity Map (Point Source/Extended Source based on Seismotectonic Database + Observed GM values + Vs30	Intensity Map (Point Source/Extended Source based on Seismotectonic Database + Observed GM values + Vs30	
INVENTORY	City Locations + Landscan Population Distribution	Building Inventory (types and storey numbers) + Population Distribution	Building Inventory (types and storey numbers) + Population Distribution	
+	+	+	Ļ	
BUILDING DAMAGE	N/A	EMS8 Intensity based Building Vulnerability with Uncertainties	Spectral Displacement based Building Vulnerability with Uncertainties	
CASUALTY	Regionally Adjusted Fatality vs Magnitude and/or EMS8 Relationships	Building Damage related Casualty Distribution	Building Damage related Casualty Distribution	
ECONOMIC LOSS	N/A	Replacement cost and loss ratio related to damage states	Replacement cost and loss ratio related to damage states	
PIPELINE DAMAGE		Pipeline damage using PGV based on GMPEs		

• Three (3) levels of analysis in ELER software

LATINUM SPONSORS

pu ve Kodostro

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

SDSS usage in Turkey

- ELER throughout Euro-Mediterranean region, 2011 Van earthquake
- KOERILoss, SELENA, SIGE Istanbul, Izmir, Bishkek and Tashkent regions
- CATS Izmit and Duzce
- DBELA Marmara region
- Integrated earthquake simulation (IES) Zeytinburnu district
- HAZTURK Zeytinburnu district

PLATINUM SPONSORS

Trimble

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

- Why recommend HAZTURK for usage in Turkey?
 structural based analysis method focusing on a single building structure for hazard value assignment in ELE calculations
- datum transformation module
- capability to use customizable, user-defined fragility curves for building codes in Turkey and the world
- module for post-earthquake ignition vulnerability assessment
- interdependence analysis of individual elements of lifeline networks e.g. natural gas pipelines
- considers non-structural elements (NSE) of building structures

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Conclusions and future developments

- SDSS aid in effective DEM Earthquakes
- GIS tools are at the core of SDSS for emergency managers
- SDSS are supported by mapping and visualization methods for easier interpretation of results
- Selected SDSS applications for earthquake risk/loss estimation
- Future developments decreasing degree of *uncertainty*, increasing *accuracy* of earthquake risk/loss estimations, *accurate models* for *risk vulnerability* from *socio-economic losses*

MAIN SUPPORTERS

PLATINUM SPONSORS

