

FIG 2018

Presented at in 18 in 1816

MAIN SUPPORTERS

6-11 May 2018

ISTANBUL

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

Assessment of Urban Forests by Using Weighted Linear Combination

Dr. Abdurrahman EYMEN, Dr. Bülent BOSTANCI Erciyes University Geomatics Engineering Department ageymen@erciyes.edu.tr

ORGANISED BY

FIG

MAIN SUPPORTERS

PLATINUM SPONSORS

Trimble

-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

INTRODUCTION

- Especially in parallel with the gradual enlargement of urban areas, the concept of urban forest has emerged as a result of the need of people for green areas.
- With this project put into practice in 2003, totally 63 urban forests were put at service of people as of the end of year
- Analyzing the urban forests in details are difficult tasks and it takes long time to investigate. But the assessments can be made via main factors that have been determined by the specialists. These factors can be listed as location, altitude, size of forest area, flora, fauna, artificial and natural facilities in the area, and oxygen production.

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

INTRODUCTION

- Besides that, location-based Geographical Information Systems and decision-making methods are widely used now.
 Weighted Linear Combination method, one of the locationbased assessment methods, is based on the weighted mean, in which the criteria are standardized within a common numeric range.
- The suitability value of each alternative is obtained from the sum of multiplications of the importance weights determined for criterion with the scores calculated within the scale.
- In this study, WLC method was used in order to GIS-based assessment of urban forests.

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

METHODOLOGY

In this study, 63 urban forests were marked on the map of Turkey by using ArcGIS software. The characteristics of 63 urban forests in terms of 8 criteria were entered in feature table. By using WLC method in the software, the raster maps were created for each criterion and, by entering the weights, the suitability values of WLC method were obtained.

ORGANISED BY

MAIN SUPPORTERS

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

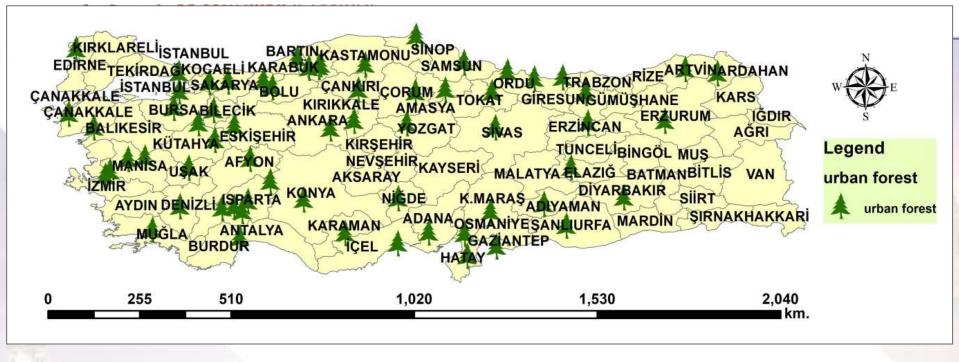
ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

WEIGHTED LINEAR COMBINATION

□ The decision-maker assigns the weights, which have relative importance, directly to a layer of characteristics map. The total score of each alternative is obtained from the sum of multiplications of importance weights determined for criteria. The suitability alternatives are calculated for each alternative, and the alternative having the highest suitability value is selected.

$$Xi = \begin{cases} \frac{a_{ik}^{q} - \min_{i,q} \{a_{ik}^{q}\}}{r_{k}^{q}}, & \text{for the } k - \text{th criterion to be maximized} \\ \frac{\max_{i,q} \{a_{ik}^{q}\} - a_{ik}^{q}}{r_{k}^{q}}, & \text{for the } k - \text{th criterion to be minimized} \end{cases} \qquad S = \sum Wi \ .Xi$$

MAIN SUPPORTERS


PLATINUM SPONSORS

ORGANISED BY

RESULTS

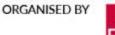
Table

11 · 1 123 · 1 124 123 123 123 124 34

Name	1D	City C	City Cent	Area	Area-Score	Oxygen	Oxygen-Score	Flora	Flora_Score	Fauna	Fauna-Scor	Facilities	Facilities-Score	Rain	Rain-Score	Elevation	Elevation
AFYONKARAHISAR KENT ORMANI	3	40	0	40	0.003203	33.5	0.003908	8	0.25	7	0.25	7	0.307692	421	0.112025		0.436281
ANKARA KENT ORMANI	6	36	0.125	650	0.064251	122.2	0.01451	2	0.05	17	0.75	6	0.384615	404	0.094553		0.362072
KARAMAN YUNUS EMRE KENT ORMANI	38	115	0.625	135	0.01271	113	0.01341	6	0.25	. 7	0.25	9	0.461538	314	0.002055	0.254406	
KIRIKKALE KENT ORMANI	40	0	1	40	0.003203	35.6	0.003908	4	0.15	γ.	0.25	. 4	0.076923	383	0.07297	0.267302	0.571339
ERZURUM KENT ORMANI	23	- 15	0.875	717	0.070957	600	0.071616	7	0.3	2	0	10	0.538462	405	0.095581	0.267394	0
KONYA AKŞEHİR KENT ORMANI	44	10	0.75	560	0.057246	485.3	0 057907	45	0.35	6	0.2	6	0 230769	513	0	the second second	0.477122
ADIVAMAN KENT ORMANI	2	21	0.476	110	0.010208	92.06	0.010900	0	0.35	- 6	0.2	0	0.230769	080	0.387461	0.274984	0.671734
UŞAK KENT ORMANI	611	1	0.825	172	0.018413	143.9	0.017103	6	0.26	4	0.1	7	0.307692	526	0.219938	0.284389	0.561255
KARABÜK VENICE KENT ORMANI	37		0.9	31	0.002302	0.0	0	0	0.35	2	0	6	0.153846	407	0.190134	0.26593	0.726553
ERZINGAN KENT ORMANI	22	16	0.625	600	0.049239	418,4	0.049911	10	0.0	5	0.15	0	0.384615	380	0.069887	0.294945	0.343902
NIGDE KENT ORMANI	6.2	6	0.85	50	0.004203	41.0	0.0049	3	0.1	14	0.6	7	0.307692	339	0.027749	0.295989	0.466474
BOLU KENT ORMANI	11	1.4	0.65	101	0.01231	100.6	0.013004	7	0.0	3	0.05	10	0.538462	660	0.244604	0.297032	0.634949
KONYA MEVLANA KENT ORMANI	43.	25	0.375	466	0.045837	390	0.046517	10	0.45	15	0.05	9	0.461538	312	0	0.298717	0.33886
ŞANLIURFA KENT ORMANI	59	6	0.85	280	0.027222	234.7	0.027955	6	0.25	6	0.2	7	0.307692	434	0.125305	0.299774	0.629279
ESKIŞEHIR KENT ORMANI	24	21	0.475	1207	0.128002	1077	0.128626	10	0.45	6	0.15	0	0.401538	340	0.038099	0.30394	0.610901
ELAZIĞ KENT ORMANI	21	20	0.5	437	0.042934	365.7	0.043612	15	0.7	y.	0.25	8	0.384615	366	0.076053	0.304832	0.376575
DÜZCE KENT ORMANI	19	9	0.825	168	0.015012	132.2	0.015705	6	0.25	2	0	6	0.153846	809	0.510791	0.309203	0.884499
MANISA GÖRDES KENT ORMANI	49	. 6	0.875	195	0.018715	103.2	0.01941	2	0.05	7	0.25	7	0.307692	000	0.384378	0.310715	0.696622
ADANA SAKIP SABANCI KENT ORMANI	1	12	0.7	34	0.002302	25.94	0.003005	/1	0	8	0.3		0.461538	646	0.343268	0.316768	0.938351
SAKARYA KENT ORMANI	66	10	0.76	40	0.003203	33.1	0.00386	2	0.05	2	0	0	0.461538	846	0.546616	0.318041	0.062573
KOCAELI KENT ORMANI	42	12	0.7	30	0.002202	26.1	0.002904	4	0.15	3	0.05	9	0.461538	031	0,533402	0.318044	0.83981
KÜTAHYA DOMANIÇ EBE ÇAMLIĞI KENT ORM	46	1	0.975	10	0.0002	6.4	600000	3	0.1	.5	0.15	10	0.538462	521	0.2146	0.318817	0.602216
ISPARTA SÜTÇÜLER KENT ORMANI	31	12	0.7	40	0.003203	33.6	0.003908	11	0.6	11	0.45	8	0.384615	601	0.194246	0.31917	0.250127
KARABÜK KENT ORMANI	36	0	1	100	0.009207	63.7	806600.0	6	0.26	4	0.1		0.230769	497	0.190134	0.319243	0.825308
BURDUR KENT ORMANI	12	0	0.775	13	0.0005	66.2	0.006502	9	0.4	5	0.15		0.615385	426	0.116136	0.32244	0.484918
ÇORUM KENT ORMANI	10		0.86	117	0.010909	97.0	0.011005	11	0.6	7	0.26	0	0.384615	447	0.138746	0.000680	0.471414
KASTANONU KENT ORMANI	40	1.1	0.798	49	0.009902	34.9	0.003633		0.26	16.	0.65	15	0.384615	500	0.109917	0 334400	0 506876
💼 🔎 📼 I 🧰 💼			≱ ≤	20 (9	(7) (19)	WV4						Masaŭstŭ **	AR ~	- 🫲 📼 🗄	 16:14 3.5.2014 	- 1

6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:


ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

RESULTS

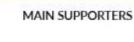

In accordance with the scoring method in this study, 8 criteria were evaluated by the focus group consisting of forest engineers, and the weights were obtained (Table 1).

Table 1. Determining the Weights

No	Criterion	Mean	Weight
		score	
1	Location	6.21	0.1460
2	Size of forest area	4.42	0.1039
3	Mean altitude	3.86	0.0907
4	Fauna	5.13	0.1206
5	Flora	6.05	0.1422
6	Precipitation level of region	4.26	0.1001
7	Oxygen production capacity	7.25	0.1704
8	Facilities within the forest area	5.36	0.1260

(XVI FIG Congress 2018 6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

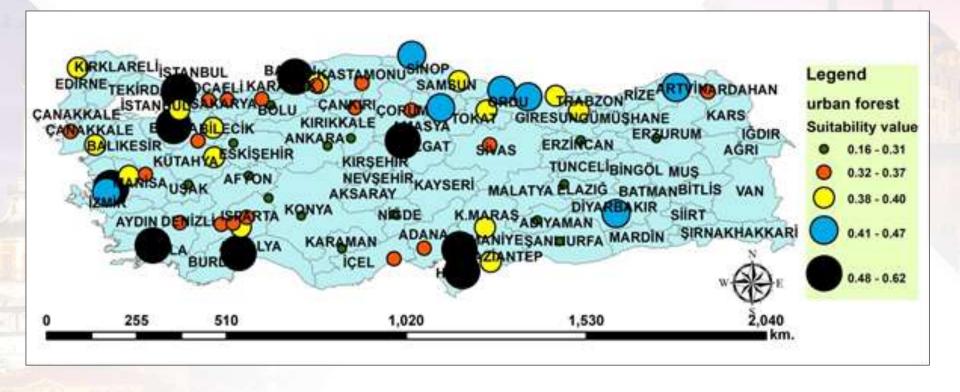
ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES RESULTS

By using the WLC method in software, the raster maps were created for each criterion. The suitability values in WLC method were calculated by entering the weights. In Table 2, there are the suitability (Si) values of first and last 5 urban forests.

Table 2. Suitability values used in assessing the urban forests

ID	Name of urban forest	Si
5	Antalya Urban Forest	0.6168
52	Osmaniye Urban Forest	0.5037
63	Zonguldak Urban Forest	0.4991
46	Manisa Urban Forest	0.4927
12	Bursa Urban Forest	0.4861
22	Erzurum Urban Forest	0.2674
39	Kırıkkale Urban Forest	0.2673
37	Karaman Y. Emre Urban Forest	0.2544
4	Ankara Urban Forest	0.2157
2	Afyonkarahisar Urban Forest	0.1563

ORGANISED BY



6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

RESULTS

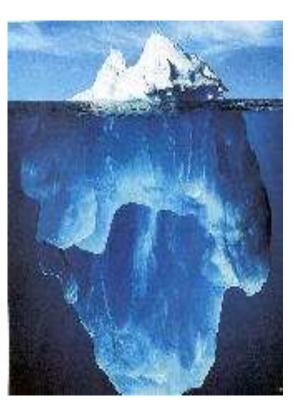
6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

CONCLUSION

- According to the assessment on map, it can be stated that the forests established in coastal regions are significantly suitable in terms of the examined criteria,
- The suitability values of forests located in inner regions are lower when compared to those located in coastal regions.
- It can be said that the climate of coastal region is better for urban forests.



6-11 May 2018 ISTANBUL

EMBRACING OUR SMART WORLD WHERE THE CONTINENTS CONNECT:

ENHANCING THE GEOSPATIAL MATURITY OF SOCIETIES

THANK YOU VERY MUCH

ORGANISED BY

MAIN SUPPORTERS

