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SUMMARY  

 

The National Oceanic and Atmospheric Administration’s (NOAA) National Geodetic Survey 

(NGS) is modernizing a number of products and models that support the future datum in 

North America – the North American-Pacific Geopotential Datum 2022 (NAPGD2022).  This 

paper will focus on the newly released experimental surface gravity model, xGRAV20.  This 

is the initial BETA release of what ultimately will be an official surface gravity model, 

GRAV2022. 

 

The xGRAV20 model is based on approximately 10 million terrestrial gravity observations 

and a high resolution digital elevation model (DEM).  The model can be used for estimating 

geodetic leveling corrections and other geodetic and geophysical applications where an 

absolute gravimeter is not available.  This paper will highlight the model methodology and 

will present an external validation using independent, high-accuracy absolute gravity data 

acquired by the NGS Geoid Slope Validation Surveys in Texas, Iowa, and Colorado.  Two 

additional elements will also be investigated in this paper: 1) the estimated uncertainty of the 

surface gravity model, and 2) the impact that new terrestrial gravity data has on omission 

error. 

 

Overall results show that the xGRAV20 model is very consistent with published geoid 

accuracies (Smith et al., 2013, Wang et al., 2017, van Westrum et al., 2021).  In Texas (with 

no topography and a relatively smooth gravity field), the gravity model is accurate to ~0.75 

mGal (RMS).  In more difficult gravity fields like those present in Iowa and Colorado, the 

xGRAV20 model shows accuracies at 1.6 mGal and 1.85 mGal, respectively.  Geoid 

accuracies are approximately 1 cm, 1.5 cm, and 3.6 cm for Texas, Iowa, and Colorado, 

respectively. 

 

Additionally over Iowa, we illustrate the impact that the observational noise and new data can 

have on the model results.  From these tests, it is quite possible that the current noise 

estimates are too conservative in this region; and the model shows improvement at the 0.5 

mGal (RMS) level when a new gravity dataset is incorporated.  
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1. INTRODUCTION 

 

NGS is in the process of modernizing the National Spatial Reference System (NSRS); like a 

lot of countries throughout the world, NGS is using a geoid model as the basis for the vertical 

reference system.  One component of the modernized NSRS and vertical datum is a surface 

gravity model, which will provide a full-field gravity value at the Earth’s surface for any 

location within the NSRS region.  The initial and experimental model, xGRAV20, will be 

presented and discussed in this paper.  This model is available for public BETA testing at the 

following NGS website: https://beta.ngs.noaa.gov/GEOID/xGRAV20/index.shtml. 

 

The xGRAV20 model relies on a vast amount of historical terrestrial gravity data of roughly 

10 million points including altimetry derived observations over the oceanic regions.  In 

addition to the gravity data, a DEM is needed to ‘restore’ the anomaly field back to a full-field 

amount.  While the data components were covered previously (Ahlgren and Krcmaric, 2020), 

a brief description of the methodology and covariance function used is provided in Section 2.  

In Section 3, results are shown compared to the GSVS lines in Texas, Iowa, and Colorado.  A 

more in-depth investigation is shown for the GSVS14 line over Iowa which includes a 

number of different observational noise scenarios and the inclusion of new terrestrial gravity 

data.  Both of these changes can be quite impactful on the model results. 

 

2. xGRAV20 METHODOLOGY 

 

The gravity prediction scheme employed by the xGRAV20 tool relies on the refined Bouger 

anomaly at point-level (Ahlgren and Krcmaric, 2020).  However, a few adaptations to this 

method are presented in the following section to highlight the exact procedure.  The 

xGRAV20 model also suffers from some inconsistencies due to the terrain correction and 

atmospheric correction at sub-mGal levels.  These improvements will be included in a future 

xGRAV model. 

 

The covariance function used in the model for interpolation purposes is described in Section 

2.1.  Due to operational and computational requirements, intermediate data types are pre-

computed on regular grids as discussed in Section 2.2.  Additionally, the error estimation is 

presented in Section 2.3.  The error estimation is not currently released in the xGRAV20 

model but future xGRAV models will incorporate this information. 

 

2.1 Covariance Function Parameters 
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The covariance function used is shown in (1) and is based on a three-dimensional logarithmic 

function (Forsberg, 1987) that uses location specific parameters (D and T) depending on the 

existing surface gravity data. 

𝐶(𝑝𝐻1 , 𝑞𝐻2) = −𝑓 ∑ 𝛼𝑖 log(𝑧 + 𝑟)

3

𝑖=0

 (1) 

where:  

𝑓 = 𝐶0/ log (
𝐷1

3𝐷3

𝐷0𝐷2
3), with 𝐷𝑖 = 𝐷 + 𝑖𝑇 and 𝐶0 as the variance. 

𝛼0 = 1; 𝛼1 = −3; 𝛼2 = 3; 𝛼3 = −1; 

𝑧 = 𝐻1 + 𝐻2 + 𝐷𝑖  ;  𝑟 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + 𝑧2 

 

2.2 Intermediate Gridded Data 

 

The applied method of gravity prediction is very computationally time-consuming especially 

with respect to terrain corrections.  While a single prediction point takes a few seconds, the 

implementation on an entire leveling line of 100s of points would simply take too long and be 

poor customer service.  With this in mind, the xGRAV20 model relies on pre-computed, 

gridded data that is simply interpolated at the user-specified location.  The specifications for 

each intermediate data type are shown in Table 1. 

 
Table 1: Specifications for gridded data types used in xGRAV20: 

Data Type: Spatial Resolution: 

Digital Elevation Model 3” 

Refined Bouguer Anomaly 1’ 

Terrain Correction 15” 

  

At a user specified location (𝜑, 𝜆, 𝐻 (optional)), the estimated full field gravity value (�̂�) will 

be calculated by the tool based on (2).  

 

�̂� = ∆�̂� +
𝑑𝛾

𝑑ℎ
𝐻 +

1

2

𝑑2𝛾

𝑑ℎ2
𝐻2 + 𝛾 − 𝛿𝑔𝐴𝑇𝑀 + 0.11195𝐻 − 𝐴 (2) 

where: 

∆�̂� = interpolated refined Bouguer anomaly from 1’ grid pre-computed on the Earth’s surface 

H  = user specified elevation (or interpolated from 3” DEM) 

𝛾 =
𝑎𝛾𝑎 cos2 𝜑 + 𝑏𝛾𝑏 sin2 𝜑

√𝑎2 cos2 𝜑 + 𝑏2 sin2 𝜑
; 

𝑑𝛾

𝑑ℎ
=

−2𝛾

𝑎
(1 + 𝑓 + 𝑚 − 2𝑓 sin2 𝜑); 

𝑑2𝛾

𝑑ℎ2
=

6𝛾

𝑎
 

𝛾𝑎, 𝛾𝑏 , 𝑎, 𝑏, 𝑓, 𝑚 are all parameters from the GRS80 reference ellipsoid 

𝛿𝑔𝐴𝑇𝑀 = 0.87 ∗ 𝑒−0.116∗(𝐻/1000)1.047
 

A = standard terrain correction with density of 2.67 g/cm3
 interpolated from 15” grid 

 

2.3 Error Estimation 

 

While the estimated uncertainty is currently not included in xGRAV20, a brief discussion is 

presented here to provide context for future models.  Any error in the terms of (2) will 
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propagate into the estimated uncertainty for the gravity value.  The majority of the estimated 

uncertainty comes from the refined Bouguer anomaly and can be estimated according to (3) 

from Moritz (1980) with covariance functions consistent with (1) from Forsberg (1987). 

 

𝜎𝑅𝐵𝐴
2̂ = 𝐶𝑠𝑠 − 𝐶𝑠𝑡(𝐶𝑡𝑡 + 𝐶𝑛𝑛)−1𝐶𝑡𝑠 (3) 

where: 

Css = autocovariance of s, which are the points being predicted 

Ctt = autocovariance of t, which are the points being used in the prediction 

Cst & Cts = cross-covariance between s & t and vice versa 

Cnn = observational noise variance 

 

The Cnn term is based on an estimated uncertainty associated with each terrestrial gravity 

observation and the impact of this will be highlighted in Section 3.1.2.  

 

The other major contributor to the estimated uncertainty comes from the uncertainty in the 

elevation, H.  The combined effect of this term is approximately 0.1967 ∗ 𝜎𝐻. 

 

We acknowledge that additional uncertainty contributions from the atmospheric correction 

and the terrain correction exist – however, these contributions are not discussed any further.  

The atmospheric component is fairly minor at only about 0.01 mGal per 100 meter of height 

error.  The terrain correction component will mostly be accounted for with consistent 

handling in the remove-restore steps with any remaining error coming from interpolation 

errors. 

 

3. RESULTS 

 

In the following section, model results in terms of the actual gravity field estimation and its 

estimated uncertainty are presented for three regions in the United States: Iowa (GSVS14), 

Texas (GSVS11), and Colorado (GSVS14).  These three regions include a GSVS profile that 

can be used as ground validation when compared with the gravity prediction results. More 

information about the GSVS lines is available at the associated references (Smith et al., 2013; 

Wang et al., 2017; van Westrum et al., 2021). 

 

3.1 GSVS14 

 

A greater focus is put on this region in Iowa in this paper due to two factors: 1) it is probably 

the most difficult region to predict gravity due to the large gravity signal from a rifting event 

and lack of terrestrial gravity data and 2) a new terrestrial gravity survey was performed by 

USGS (Reitman and Drenth, 2019) allowing us to highlight the impact of adding new data to 

the prediction.  The general region is shown in Figure 1 with the refined Bouguer anomaly 

predicted over a 1’ grid for the various scenarios discussed below. 
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Figure 1: GSVS14 Region with refined Bouguer anomaly in mGal.  White squares are existing terrestrial gravity data used in 

the xGRAV20 model; Red squares are new terrestrial gravity observations from USGS (Reitman and Drenth, 2019); Green 

squares are the GSVS14 ground truth data. 

3.1.1 Covariance Parameter Estimation 

 

To get a deeper perspective on the covariance model used in this prediction scheme, the 

estimated covariance function parameters, D and T, (from (1)) are illustrated in Figure 2 and 

3, respectively.  These are based on the original terrestrial gravity dataset and are 

geographically variable based on the underlying data.     
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Figure 2: D estimated covariance parameter [km]. 

The D term is impacted by the density of the underlying data and the magnitude of the signal 

predicted.  In regions where the underlying data is dense, the D term is smaller as can be seen 

in the southwest portion of Figure 2.  Additionally, the larger magnitude in the gravity field in 

the western two-thirds of the region will generally cause the D term to be larger compared to 

the eastern one-third where the magnitude of the field and the D term are both smaller. 

 

 
Figure 3: T estimated covariance parameter [km]. 

The T term shown in Figure 3 is generally impacted by the same two factors: data density and 

signal magnitude.  However, this term is more impacted by the horizontal gradient of the field 

than the magnitude.  There is considerably less coherence with this term compared to the D 

term, which will be the subject of future investigation. 
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3.1.2 Impact of different observational noise scenarios 

 

While often overlooked, the observational noise associated with each underlying data point 

has a significant impact on the predictions.  This is important because we don’t have 

additional information about how the terrestrial gravity surveys were performed that would 

include realistic gravity uncertainties.  This is a very common scenario in many countries that 

rely on decades-old gravity datasets.  As a consequence, we utilize an estimated uncertainty 

on each underlying gravity observation, which is used as the diagonal elements of Cnn in (3).  

This original scenario is shown as Case I in the following section. 

 

To highlight the importance of this observational noise, we estimate the gravity field with two 

additional noise scenarios keeping everything else the same: 1) original noise from Case I is 

reduced by a factor of 2 resulting in Case II; and 2) noise is fixed to a constant value of 1 

mGal for all points resulting in Case III.  The comparison of these three cases to the ground 

truth data collected with the GSVS14 survey is illustrated in Figure 4 along with statistics in 

Table 2. 

 

 
Figure 4: GSVS14 gravity prediction residuals. Case I: original noise; Case II: noise is 1/2 that of Case I; Case III: uniform 

noise of 1.0 mGal; Case IV: new USGS data added (see Section 3.1.3 for details).  Direction of profile is west to east. 

Table 2: GSVS14 gravity prediction resisdual statistics. 

 Min. 

[mGal] 

Max. 

[mGal] 

Mean 

[mGal] 

Std. Dev. 

[mGal] 

RMS 

[mGal] 

Skewness 

[ ] 

Kurtosis 

[ ] 

Case I -4.44 8.16 -0.26 1.70 1.72 1.09 8.37 
Case II -4.32 7.70 -0.19 1.59 1.60 1.01 8.29 
Case III -5.45 3.27 -0.39 1.57 1.62 -0.59 3.49 
Case IV -3.50 8.16 -0.17 1.52 1.53 1.95 11.29 

 

Isolating our comparison to Cases I, II, and III for the moment, it is evident that Case II and 

Case III are superior to Case I, which signifies that the original noise estimates are likely too 
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conservative.  However, caution should be exercised as we have very sparse data in this 

region and the models are only different in a few areas of the GSVS14 profile (see Figure 4 

around 45 km, 125 km, and 220 km).   

 

It is possible that only a small handful of points have unrealistic, conservative noise estimates.  

For example, the region from 30 to 65 km is illustrated in Figure 5 with the observational 

standard deviations shown.  At approximately 40 km and again at 50 km, there are two 

individual observations that have an estimated noise of 10 mGal, which based on the 

preceding results seems too conservative and is degrading the results to some degree. 

 

 
Figure 5: GSVS14 profile from 30 km to 65 km with estimated noise (standard deviations) in mGal.  Numbers in bold are the 

distance along the GSVS14 profile from the west end.  Green squares are the GSVS14 validation data locations. 

In order to provide a little more detail about the various cases, each model residual is shown 

in Figure 6 as the total percentage of points below a particular threshold from the GSVS14 

data: 0.5 mGal, 1 mGal, 2 mGal, and 5 mGal.  This removes the impact of large residuals that 

have more influence on the standard deviation and RMS shown in Table 2.  Based on Figure 

6, it is evident that Case II is outperforming Case I and Case III with significantly higher 

percentages of data within 0.5 mGal, 1 mGal, and 2 mGal.  One other significant conclusion 

from Figure 4 and Figure 6 is that we likely would have incorrectly identified Case III as the 

best scenario, if we would have only considered Figure 4 (Case III has the lowest std. dev., 

best handling of large residuals (tight min. to max and kurtosis near 3).  However, Figure 6 

illustrates support for Case II being a more accurate model.   
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Figure 6: Percentage of data where the gravity residual to GSVS14 is below a particular threshold (0.5, 1.0, 2.0, & 5.0 

mGal). 

Finally, the Case I estimated model uncertainties are shown in Figure 7.  The model 

uncertainties are impacted mostly by data density and are typically at the 1.5 mGal level 

though they can approach almost 9 mGal in a worst-case scenario.   

 

 
Figure 7: Case I estimated uncertainty at 1-sigma. Statistics in [mGal]: [Min: 0.32; Max: 8.87; Mean: 1.48; Std. Dev.: 0.61] 

Additionally, the error envelope is shown along the GSVS14 profile for Case I, II, and III in 

Figure 8.  This signifies how frequently the model is within the estimated uncertainties, so if 

any given observation is within the envelope, it is within the 1-sigma level for that particular 

model.  Figure 8 shows consistent results as those presented in Figure 4.  Table 3 shows the 

percentage of data from each case that falls within the 1-sigma level and 1.96-sigma level, 

which under ideal, normal distribution should be 68% and 95%, respectively.  This highlights 

a slightly different result in that the error envelope is more realistic with the initial, Case I, 

observational noise estimates. 
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Figure 8: Case I, II, and III model residual profiles compared with GSVS14 with 1-sigma error envelope shown. 

Table 3: Percentage of data within error envelope(s) 

 Percentage within 

1-sigma estimate 

Percentage within 

1.96-sigma estimate 

Case I 73.0 91.7 

Case II 54.4 77.9 

Case III 46.6 70.1 

Case IV 77.5 92.6 

3.1.3 Impact of new terrestrial gravity data on results 

 

Finally, results from Case IV are presented in the following section.  In this case, a new 

terrestrial gravity dataset collected by the USGS from 2016 to 2018 (Reitman and Drenth, 

2019) is incorporated to the original underlying dataset and used in the model predictions.  

This dataset has 1080 observations, which are given an assumed noise of 2 mGal on each 

observation, which is likely too conservative, but is consistent with the minimum noise in the 

original data.  These results are shown in Figure 4 and 6 along with Table 2.  This case is 

identical to Case I up to the ~225 km distance.  From ~225 km to the end of the GSVS14 

profile, the new data improves the results quite significantly and decreases the overall RMS 

from 1.72 mGal (Case I) to 1.53 mGal (Case IV).  However, if we isolate just the section 

being impacted by the new data (the last 74 observations – from 225 km to the end), the RMS 

drops from 1.86 mGal to 1.35 mGal (i.e. 0.5 mGal improvement) with the new data.  The 

error envelope for Case IV is shown in Figure 9 where the improvement is clearly visible 

along with an overall decrease in the estimated uncertainty from ~225 km to the end of the 

profile. 
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Figure 9: Case I and IV model residual profiles compared with GSVS14 with 1-sigma error envelope shown. 

3.2 GSVS11 

 

A more concise overview of the results of an update to the xGRAV20 model over the Texas 

GSVS11 region and is presented in the following section.  These results are slightly different 

than those obtained from the publically available version as the terrain correction and 

atmospheric correction are modified slightly.  The model residuals compared with the 

GSVS11 validation data are shown in Figure 10. 

 

The gravity field in this region is much more consistent than either of the other two regions 

and this is evident in the results as predictions are accurate at the 0.75 mGal RMS level.  The 

first 100 km of the profile has slightly degraded performance compared to the rest of the 

profile. 
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Figure 10: Gravity model estimate residuals from GSVS11. Residual statistics in [mGal]: [Min: -1.70; Max: 2.61; Mean: 

0.27; Std. Dev.: 0.71; RMS: 0.76; Skewness: 0.37; Kurtosis: 3.99].  Direction of profile is north to south. 

3.3 GSVS17 

 

The updated gravity model results over the mountainous Colorado region are shown in Figure 

11 along with the elevation profile for added context as this profile has extreme elevation 

differences (from 1900 to 3300 meters).  Overall, the model performs quite well with 1.84 

mGal RMS.  Over the first 2/3 of the profile (from 0 km to 240 km), the model performs very 

well with residuals rarely exceeding +/- 2 mGals.  However, from 240 km to 315 km, which 

coincides with the second mountain pass, there is a more significant degradation in the results 

with residuals at the 4 to 6 mGal level.  This section has very limited gravity coverage, which 

also has significant ramifications for geoid modeling.  This is evident in Wang et al (2021) 

where 14 independent geoid models all diverge from the ground truth by 5 to 10 cm in this 

same section. 

 
Figure 11: Gravity model estimate residuals from GSVS17 (in cyan) with elevation profile (in black) for context. . Residual 

statistics in [mGal]: [Min: -4.41; Max: 6.01; Mean: 0.77; Std. Dev.: 1.66; RMS: 1.84; Skewness: 0.96; Kurtosis: 4.71].  

Direction of profile is west to east. 
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4. CONCLUSION  

 

Overall, the xGRAV20 model provides a computationally fast and accurate surface gravity 

value over the NAPGD2022 region.  This model is based on the refined Bouguer gravity 

anomaly and a three-dimensional logarithmic covariance function that has been pre-computed 

on a 1’ grid.  This paper highlights the results of the estimated uncertainties that are not 

currently a part of xGRAV20 but will be included in a future model. 

 

The covariance function employed by xGRAV20 estimates two geographically variable 

parameter (D and T) that are influenced by the density of the surrounding underlying gravity 

data, the magnitude of the gravity field, and the variability of the gravity field.  For the 

GSVS14 region over Iowa, the D parameter is almost completely controlled by the data 

density and the T parameter is influenced by a more complex combination of these properties.  

 

Additionally, there is clearly an importance from the observational noise estimates that is 

often overlooked.  Over the GSVS14 region, three scenarios (Case I, II, & III) were shown 

where only the observational noise was altered.  Based on these scenarios, it is likely that the 

noise estimates currently used in xGRAV20 are too conservative or a small number of 

observations have too conservative noise values.  From these scenarios, we also see the 

importance of using additional statistics when evaluating statistical results. 

   

The final conclusion from the GSVS14 test cases is the importance of new gravity data.  

While this isn’t a surprising conclusion, the incorporation of new, high accuracy terrestrial 

gravity data will very likely lead to improved results and drive down uncertainty estimates.  

This is especially true in the GSVS14 region where the data distribution is quite sparse and 

we see improvements of 2+ mGals on individual marks and 0.5 mGal RMS overall (the last 

74 observations that are influenced by the new data have 1.35 mGal RMS with new data 

compared to 1.86 mGal RMS, originally). 

 

The gravity prediction results shown here are very consistent with the geoid results that have 

been reported on the GSVS lines.  Over GSVS11, Smith et al (2013) report +/- 1 cm relative 

geoid errors which is in line with the +/- 1.1 cm standard deviation error obtained with 

xGEOID20B.  Over this region, the gravity is approximately +/- 0.75 mGal RMS based on 

results presented in this paper.  Over GSVS14, Wang et al (2017) report +/- 1.5 cm geoid 

error; results presented in Section 3.1 for the gravity field show accuracies at the ~1.6 mGal 

level.  For GSVS17, van Westrum et al (2021) show results of +/- 3.6 cm for the geoid profile 

which is consistent with results for the gravity field of 1.84 mGal presented in Section 3.3. 

 

There are still areas for improvement that a future xGRAV model will incorporate.  Realistic 

error estimates need to be determined and included in the model as evidenced by Section 3.  

More consistent terrain and atmospheric corrections will lead to sub-mGal improvements; 

however, more impactful improvements can likely be achieved with observational noise 

estimates that are more realistic, better outlier and suspect data detection and handling, and 

more accurate data in gap areas. 
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