

Volunteering for the future -Geospatial excellence for a better living

and Lidar Systems utilizing Sensor Fusion for Survey Kinematic Lidar Data Acquisition

Dr. Andreas Ullrich Chief Technical Officer, RIEGL Laser Measurement Systems, Austria Nikolaus Studnicka

Business Division Manager – Terrestrial Laser Scanning RIEGL Laser Measurement Systems, Austria

Scientific Workshop on Uncertainty and Quality of Multi-Sensor Systems Session 4: Quality of Terrestrial Laser Scanning, 11.9.2022

Volunteering for the future – Geospatial excellence for a better living

Contents

- About RIEGL
- Waveform Lidar Technology
- Multi-Sensor Systems for Static and Kinematic Lidar Acquisition
- Registration and Adjustment in Terrestrial Laser Scanning

Volunteering for the future – Geospatial excellence for a better living

RIEGL headquarters provides more than 6000 square meters work space for research, development, production, as well as for marketing, sales, training and administration.

Another 32,500 square meters of outdoor facilities are available for product calibration and testing.

Research, Development & Production

Outdoor 3D-Test Range

Volunteering for the future – Geospatial excellence for a better living

Contents

- About *RIEGL*
- Waveform Lidar Technology
- Multi-Sensor Systems for Static and Kinematic Lidar Acquisition
- Registration and Adjustment in Terrestrial Laser Scanning

Volunteering for the future -Geospatial excellence for a better living

Waveform LiDAR Core Technologies

Volunteering for the future – Geospatial excellence for a better living

Ultimate LiDAR Core Technologies

Volunteering for the future – Geospatial excellence for a better living

Ultimate LiDAR Core Technologies

Volunteering for the future – Geospatial excellence for a better living

RIEGL Waveform LiDAR Technology

Volunteering for the future -Geospatial excellence for a better living

Ultimate LiDAR Core Technologies

Volunteering for the future -Geospatial excellence for a better living

Amplitude vs. amplitude Reflectance High 17 AL

Volunteering for the future – Geospatial excellence for a better living

Contents

- About *RIEGL*
- Waveform Lidar Technology
- Multi-Sensor Systems for Static and Kinematic Lidar Acquisition
- Registration and Adjustment in Terrestrial Laser Scanning

Volunteering for the future -Geospatial excellence for a better living

Multi-Sensor Systems for Static and Kinematic Lidar Acquisition

Volunteering for the future – Geospatial excellence for a better living

Multi-Sensor System Calibration

Example Mobile Laser Scanning RIEGL VMX-2HA

for each LiDAR:

inner orientation

(raw measurements to point coords in SOCS)

• outer orientation (SOCS in e.g. body frame) for each **camera**:

- inner orientation (pixel to beam in CMCS)
- outer orientation (CMCS in e.g. body frame)

for inertial measurement unit (IMU):

inner orientation

(raw meas. to accel. and rot. speeds in IMCS)

• outer orientation (IMCS in e.g. body frame, BOCS)

for GNSS receiver:

- antenna model (only for mm-accuracy req.)
- position (and orientation) of antenna in body frame

Example Airborne Laser Scanning *RIEGL* VQ-1560II-S

SOCS ... scanner's own coordinate system, CMCS ... camera CS, IMCS .. inertial measurement unit CS, BOCS .. Body CS

Volunteering for the future – Geospatial excellence for a better living

Multi-Sensor System Calibration

Example Terrestrial Laser Scanning *RIEGL* VZ-400i

for each LiDAR:

- inner orientation
- (raw measurements to point coords in SOCS)
- outer orientation (SOCS in e.g. body frame)

for each camera:

- inner orientation (pixel to beam in CMCS)
- outer orientation (CMCS in e.g. body frame)
- for inertial measurement unit (IMU):
- inner orientation
- (raw meas. to accel. and rot. speeds in IMCS)
- outer orientation (IMCS in e.g. body frame, BOCS)

for GNSS receiver:

- antenna model (only for mm-accuracy req.)
- position (and orientation) of antenna in body frame

Example Unmanned Laser Scanning *RIEGL* VUX-120

SOCS ... scanner's own coordinate system, CMCS ... camera CS, IMCS .. inertial measurement unit CS, BOCS .. Body CS

Volunteering for the future – Geospatial excellence for a better living

Contents

- About RIEGL
- Waveform Lidar Technology
- Multi-Sensor Systems for Static and Kinematic Lidar Acquisition
- Registration and Adjustment in Terrestrial Laser Scanning
 - Stop-and-Go Data Acquisition
 - Kinematic Data Acquisition

Volunteering for the future -Geospatial excellence for a better living

Contents

- About RIEGL •
- Waveform Lidar Technology

Registration

finding initial estimate of poses (position and orientation) for each scan position

Adjustment optimizing poses of each scan position in order to achieve best consistency of final data with all measurements/observations

- Multi-Sensor Systems for Static and Kinematic Lidar Acquisition
- **Registration and Adjustment in Terrestrial Laser Scanning** •
 - **Stop-and-Go Data Acquisition**

Sensors supporting Registration and Adjustment of Lidar Data

	output	update rate	accuracy / bias and scale stability	repeatability / noise	probability of outliers	price range
GNSS Receiver	position	1 – 100 Hz	1 cm – 10 m	low	high	50 – 5,000 €
Inertial Measurement Unit	acceleration & angular rate	0.1 – 10 kHz	low - high	low – high	very low	1 – 100,000 €
Magnetic Field Sensor	orientation	up to 1 kHz	medium	medium	very high	1 – 10 €
Barometric Sensor	height	up to 100 Hz	low	medium	medium	1 – 10 €
Camera	orientation change	1 – 100 Hz	medium – high	medium – high	medium	10 – 10,000 €
Lidar	3D data	none – 50 Hz	mm – few cm	mm – few cm	very low	100 – 100,000 €

Volunteering for the future – Geospatial excellence for a better living

Registration

Approaches

- finding & matching tie objects (markers, cylinders, spheres)
- supplementing points by local feature vectors with subsequent feature matching
- minimizing errors in overlapping regions with ICP algorithms

Registration in the Spectral Domain

- automatic and sequential registering of newly acquired point cloud wrt. to all previous ones
- especially robust

Volunteering for the future – Geospatial excellence for a better living

spectral registration – phase-only matched filtering

• resampling of irregular point cloud yields 3D voxel dataset: $v_1(x)$

Volunteering for the future – Geospatial excellence for a better living

spectral registration – phase-only matched filtering

- resampling of irregular point cloud yields 3D voxel dataset: $v_1(x)$
- same "signal" but rotated and shifted and denoted as $v_2(x)$: $v_2(x) = v_1(Rx+t)$

Volunteering for the future – Geospatial excellence for a better living

point set 1, v1(x)

point set 2, v2(x)

spectral registration – phase-only matched filtering

- resampling of irregular point cloud yields 3D voxel dataset: $v_1(x)$
- same "signal" but rotated and shifted and denoted as $v_2(x)$: $v_2(x) = v_1(Rx+t)$
- Fourier transform of $v_1(\mathbf{x})$ and $v_2(\mathbf{x})$: $V_1(\mathbf{k})$ and $V_2(\mathbf{k})$
- Fourier Rotation Theorem und Shift Theorem $V_2(\mathbf{k}) = V_1(R\mathbf{k}) \exp(i2\pi \mathbf{k}^T R^{-1} t)$
- analysing only magnitudes yields rotation R $|V_2(\mathbf{k})| = |V_1(R\mathbf{k})|$

spectral registration – phase-only matched filtering

- resampling of irregular point cloud yields 3D voxel dataset: $v_1(x)$
- same "signal" but rotated and shifted and denoted as $v_2(x)$: $v_2(x) = v_1(Rx+t)$
- Fourier transform of $v_1(\mathbf{x})$ and $v_2(\mathbf{x})$: $V_1(\mathbf{k})$ and $V_2(\mathbf{k})$
- Fourier Rotation Theorem und Shift Theorem $V_2(\mathbf{k}) = V_1(R\mathbf{k}) \exp(i2\pi \mathbf{k}^T R^{-1} t)$
- analysing only magnitudes yields rotation R $|V_2(\mathbf{k})| = |V_1(R\mathbf{k})|$
- after applying rotation $(V_2'(\mathbf{k}))$, analysis yields shift $t V_2'(\mathbf{k}) = V_1(\mathbf{k}) \exp(i2\pi \mathbf{k}^T t)$

Volunteering for the future -Geospatial excellence for a better living

example:

- parking garage (multi-storey car park)
- 4 storeys, upper most with open sky access
- indoors area 140.000 ft² / 13.000 m²

acquisition

- *RIEGL* VZ-400i, 165 scan positions
- spatial sampling 0.04 deg / 7 mm @ 10 m
- 5 images / scan positions
- total time: 3h 42 min
- average time: 81 sec/scan position

Volunteering for the future -Geospatial excellence for a better living

example:

- parking garage (multi-storey car park)
- 4 storeys, upper most with open sky accessibility
- indoors area 140.000 ft² / 13.000 m²

registration

- automatic registration .
- no user interaction required •
- total time (standard PC): 1h 2 min .
- average time 23 sec/scan position .

Volunteering for the future -Geospatial excellence for a better living

example:

- parking garage (multi-storey car park)
- 4 storeys, upper most with open sky accessibility
- indoors area 140.000 ft² / 13.000 m²

registration

- automatic registration
- no user interaction required
- total time (standard PC): 1h 2 min
- average time 23 sec/scan position

Volunteering for the future – Geospatial excellence for a better living

registration

- automatic registration
- no user interaction required
- total time (standard PC): 1h 2 min
- average time 23 sec/scan position

multi-station adjustment

- rigorous adjustment
- utilizing GNSS, control points, all internal sensors data
- total time 38 min
- average time per scan position 14 sec
- automatic generation of detailed report

Volunteering for the future -Geospatial excellence for a better living

example:

- parking garage (multi-storey car park)
- 4 storeys, upper most with open sky accessibility
- indoors area 140.000 ft² / 13.000 m²

multi-station adjustment

- rigorous adjustment .
- visual inspection . standard deviation within 10 cm voxels

Volunteering for the future -Geospatial excellence for a better living

example:

- · parking garage (multi-storey car park)
- 4 storeys, upper most with open sky accessibility
- indoors area 140.000 ft² / 13.000 m²

multi-station adjustment

- rigorous adjustment ٠
- visual inspection ٠ standard deviation within 10 cm voxels

Volunteering for the future – Geospatial excellence for a better living

5 p.m.

Volunteering for the future – Geospatial excellence for a better living

5 p.m.

Volunteering for the future -Geospatial excellence for a better living

SilviLaser benchmark test

Volunteering for the future – Geospatial excellence for a better living

residuals in angle [deg]

Volunteering for the future – Geospatial excellence for a better living

Contents

•

- About RIEGL
- Waveform Lidar Technology
- Multi-Sensor Systems for Static and I

Registration and Adjustment in Terrestrial Laser Scanning

- Stop-and-Go Data Acquisition
- Kinematic Data Acquisition

Registration

finding initial estimate of all poses of the lidar sensor for **each lidar measurement**, i.e., the **trajectory** of the platform

Adjustment optimizing of all poses of the lidar sensor for **each lidar measurement** in order to achieve best consistency of final data with all measurements / observations

Volunteering for the future – Geospatial excellence for a better living

Figure 1: Standard kinematic mapping processing pipeline with trajectory-level error modelling

Integrated Trajectory Estimation for 3D Kinematic Mapping with GNSS, INS and Imaging Sensors: A Framework and Review

Florian Põppl^a, Norbert Pfeifer^a, Hans Neuner^a

"Department of Geodesy and Geoinformation, TU Wien, Wiedner Hauptstraße 8/E130, 1040 Wien, Austria

Project ZAP-ALS

Improving reliability, automation and precision through integrated estimation of trajectories and point clouds from GNSS, INS and ALS

Project no. 883660, supported by the Austrian Research Promotion Agency, FFG

Volunteering for the future -Geospatial excellence for a better living

Figure 2: Holistic kinematic mapping processing pipeline with sensor-level error modelling

Integrated Trajectory Estimation for 3D Kinematic Mapping with GNSS. INS and Imaging Sensors: A Framework and Review

Florian Poppl^a, Norbert Pfeifer^a, Hans Neuner^a

^aDepartment of Geodesg and Geoinformation, TU Wicz, Wiedner Hauptstraße 8/E139, 1040 Wicz, Austria

- 1. calculating initial trajectory
- 2. initial georeferencing of lidar data
- 3. re-calculating trajectory from IMU raw data, GNSS positions, and lidar/image observations
- 4. final georeferencing of lidar data

Volunteering for the future – Geospatial excellence for a better living

Kinematic Scanning with RIEGL VZ-2000i from Car Roof

Line Scan Mode

Radar Mode

Volunteering for the future -Geospatial excellence for a better living

Kinematic Scanning with *RIEGL* VZ-2000i from Car Roof

Line Scan Mode

Radar Mode

Volunteering for the future – Geospatial excellence for a better living

Kinematic Scanning with RIEGL VZ-2000i from Car Roof

Pros Line Scan Mode

- higher resolution
- regular scan pattern

Cons Line Scan Mode

- more scan shadows
- 2 passes necessary to cover both sides of the street

Volunteering for the future – Geospatial excellence for a better living

Kinematic Scanning with RIEGL VZ-2000i from Car Roof

Pros of Radar Mode

- higher overall accuracy of trajectory
- only one single pass is necessary
- less scan shadows

Cons of Radar Mode

- less small details due to irregular scan pattern

- same object is covered multiple times
- the facade is covered 9 times
- platform speed approx. 10 km/h
- scanner rotation speed 150°/sec.
- noise of data close to static TLS data

Volunteering for the future – Geospatial excellence for a better living

- June 2022
- 315 scan positions
- about 10 m apart
- forth and back
- in about 7h10min

ightarrow ground truth

Volunteering for the future – Geospatial excellence for a better living

cross section from TLS stop & go acquisition

Volunteering for the future – Geospatial excellence for a better living

Angular Rate Noise – Allan Deviation

Volunteering for the future – Geospatial excellence for a better living

Survey-grade Lidar Systems utilizing Sensor Fusion for Static and Kinematic Lidar Data Acquisition

Dr. Andreas Ullrich Chief Technical Officer, *RIEGL* Laser Measurement Systems, Austria Nikolaus Studnicka Business Division Manager – Terrestrial Laser Scanning *RIEGL* Laser Measurement Systems, Austria

Scientific Workshop on Uncertainty and Quality of Multi-Sensor Systems Session 4: Quality of Terrestrial Laser Scanning, 11.9.2022

Thank you

for your kind attention