

Volunteering for the future – Geospatial excellence for a better living

Artistist step towards automatic construction progress monitoring (11665)

Authors:

Noaman Sheik, Greet Deruyter, Alain De Wulf and Peter Veelaert

Presenter: Prof. dr. ing. Greet Deruyter Corresponding author: Noaman Sheik (noamanakbar.sheik@ugent.be)

FACULTY OF ENGINEERING

IIII HILINA

Volunteering for the future – Geospatial excellence for a better living

Introduction

Volunteering for the future -Geospatial excellence for a better living

Theory

- Progress monitoring
 - design = BIM
 - as built = (laser scan) point cloud
- Problem
 - reference system as built \neq reference system design
 - manual georeferencing of as built and design model \Rightarrow time consuming + requires specialist knowledge

3

Volunteering for the future – Geospatial excellence for a better living

Theory

• What is new?

semi-automated coarse registration (or geo-referencing) methods,
to be used for incomplete as-built models >> progress monitoring
clutter-proof

• What is it not?

a fine registration method >> several existing algorithms (ICP)

Volunteering for the future – Geospatial excellence for a better living

Method

- geo-referencing (registration process)
 - coordinate transformation
 - 3 rotation parameters
 - 3 translation parameters
 - laser scanning \Rightarrow scale factor = 1
 - calculation of transformation parameters based on
 - building geometry
 - plane segments (plane-based method)
 - corner points (corner point-based method)

Workflow PLANE-based method

Ref: Sheik, N.A.; Deruyter, G.; Veelaert, P. Plane-Based Robust Registration of a Building Scan with Its BIM. *Remote Sens.* **2022**, *14*, 1979. https://doi.org/10.3390/rs14091979

FACULTY OF ENGINEERING

Workflow CORNER POINT -based method

Volunteering for the future -Geospatial excellence for a better living

Results

- Simulated datasets: for testing the algorithms
- **Real-life datasets**

conference room

AND ARCHITECTURE

PLATINUM SPONSORS

8

Volunteering for the future – Geospatial excellence for a better living

Visual results simulated datasets

BIM: green

point cloud: yellow

CORNER POINT - based

XXVII FIG CONGRESS 11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Visual results real-life datasets

PLANE-based

BIM: green

point cloud: yellow

Volunteering for the future – Geospatial excellence for a better living

Geesri

THE SCIENCE OF WH

PLATINUM SPONSORS

Trimble.

Results - analytical		PLANE-based			CORNER POINT -based		
		RMSE	X _R	Χ _T	RMSE	X _R	X _T
		[mm]	[°]	[mm]	[mm]	[°]	[mm]
	simulated (1 floor)	7.2	0.007	29.2	7.5	0.002	4.0
	simulated (2 floors)	8.8	0.005	35.4	8.5	0.003	7.8
	conference room	18.1	0.027	94.3	15.9	0.015	37.6
	educational building	17.8	0.021	107.1	16.1	0.009	39.7
				11			

AND ARCHITECTURE

GHENT

UNIVERSITY

Volunteering for the future – Geospatial excellence for a better living

Results: limitations

- Plane-based method
 - as-built point cloud: minimum 3 plane segments in distinct directions
 - size of as-built planes y size of BIM-planes
- Corner point-based method
 - minimum 2 corner points (= 6 plane segments) in the scan model
 - minimum one corner point non-symmetric relative to the others

Volunteering for the future – Geospatial excellence for a better living

Conclusion

- Progress monitoring
 - building cost Sum efficiency //
 - recurrent accurate registration of as-built point clouds
- Existing registration algorithms
 - specialized human intervention
 - or completed buildings

Volunteering for the future – Geospatial excellence for a better living

Conclusion

- Proposed methods
 - based on common dominant geometries
 - less sensitive for noise and outliers
 - suitable for incomplete buildings
- Corner point-based
 - more accurate
- Plane-based method
 - more suitable in early stages of the construction process
- Basis for automated progress monitoring

Volunteering for the future – Geospatial excellence for a better living

