

Volunteering for the future – Geospatial excellence for a better living

A Practical Approach to Quality Control of Geographic Information

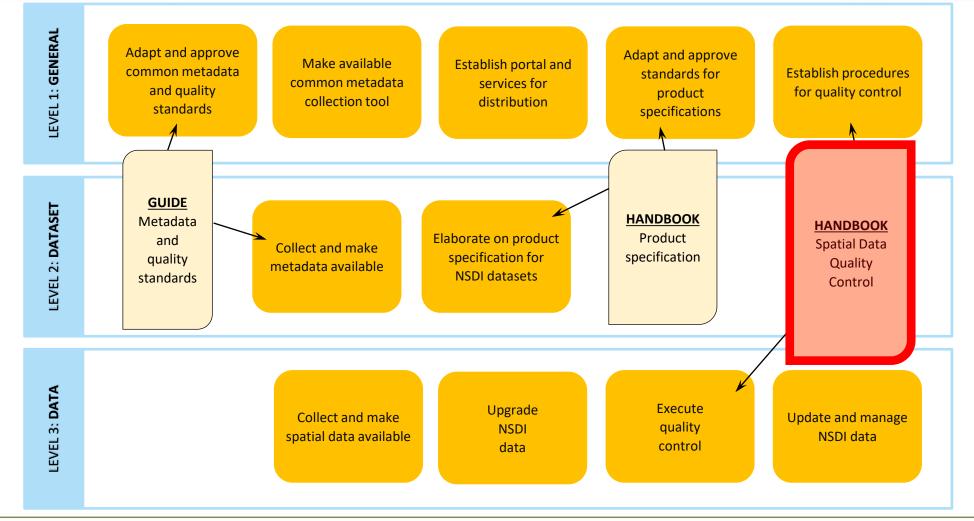
by Frank Haugan, Helge Onsrud and Oskar Henriksen

February 2022

Namibia Spatial Data Quality and Metadata Handbook

Towards official certification of spatial data in Namibia

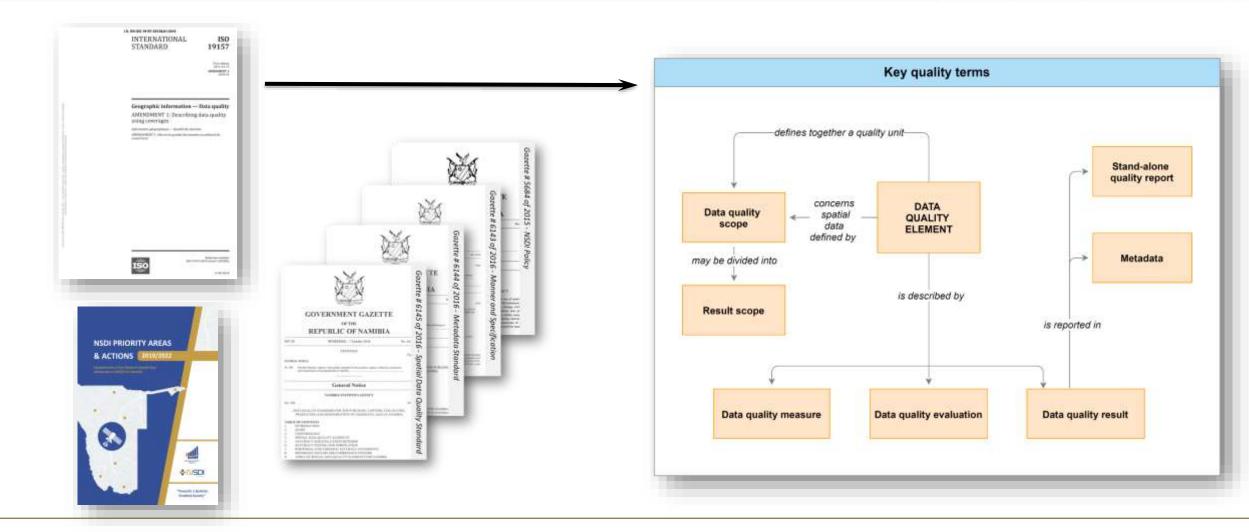
Background and approach


Content of the Handbook

Content of the eLearning platform

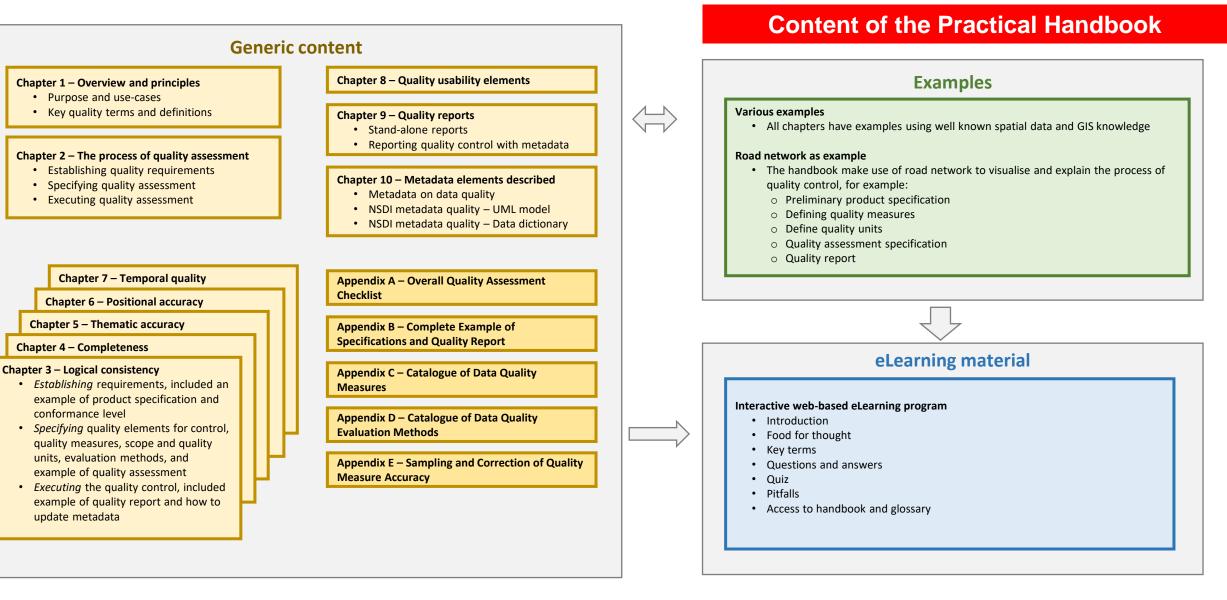
The idea is bridging the gap *between the complex* language in a standard and the spatial data / GIS practitioners

Volunteering for the future – Geospatial excellence for a better living

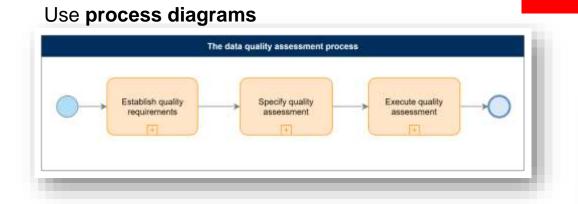


PLATINUM SPONSORS

Volunteering for the future – Geospatial excellence for a better living



11–15 SEPTEMBER 2022 Warsaw, Poland


Volunteering for the future – Geospatial excellence for a better living

Volunteering for the future -Geospatial excellence for a better living

Generic content Chapter 7-Temporal quality Chapter 6 - Positional accuracy Chapter 5 - Thematic accuracy Charter 6 - Completeness Chapter 3 - Logical consistency · Establishing requirements, included an example of product specification and conformance level · Specifying quality elements for control. quality measures, scope and quality units, evaluation methods, and example of quality assessment · Executing the quality control, included example of quality report and how to update metadata

Use tip frames

Standard and preliminary product specifications

The handbook refers two types of product specifications. The standard product specification is understood as a specification which is according to the ISO 19131:2007 - Data product specifications.

The preliminary product specification is understood as spatial data requirements needed to execute quality control.

Use example frames

DATASET: Land use		
Reference system	WGS 84 / UTM zone 335	
Positional accuracy, conformance limit	The horizontal accuracy requirement is 5 m. The vertical accuracy requirement is 7 m.	
Topology	Coinciding geometry in the data are used to show common geometry. The points shall coincide (snapped) in two or three dimensions reflecting the reality.	
Format	GML version 3.1	
FEATURE TYPE: Land	d use	
Short definition	_	An area having a homogeneous land use type
Conditional		Minimum area is 500 m ²
Geometry representa	tion	Surface

Content of the Practical Handbook

11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future -Geospatial excellence for a better living

Content of the Practical Handbook

QM ID	Quality element	QM-name	QM-definition	QM-description	Value type	Evaluation method (QE ID)
QM1	Logical consistency format consistency	Format conflict rate	Rate of error in format.	Number of items in the dataset that are stored in conflict with the format specification divided by the total number of items.	Percentage	QE1
QM2	Logical consistency domain consistency	Domain non- conformance rate	Rate of non-conformance with the value domain. (Feature names, attribute names, code lists etc.)	Number of items in the dataset that are not in conformance with their value domain divided by the total number of items.	Percentage	QE1
QM3	Logical consistency conceptual consistency	Count of non- compliance cases with conceptual schema	Count of non-conformance with conceptual schema. (Rules to ensure that real-world features are represented correctly.)	Number of items in the dataset not compliant with the conceptual schema.	Integer	QE8
QM4	Logical consistency topological consistency	Count of non- conformance coinciding lines and points	Count of curves and points that logically coincide in the real world, but not in the dataset.	Number of curves and points that should be coinciding, but do not coincide.	Integer	QE8
QM5	Logical consistency topological consistency	Count of missing connections overshoot/undershoot	Number of curves that mis- matched due to undershoot or overshoot.	Number of mismatches in the dataset.	Integer	QE8
QM6	Logical consistency topological consistency	Count of faulty point- curve connections	Count of point curve connections in conflict with the nature of the real-world connection.	Number of conflicts in the dataset.	Integer	QE8
QM7	Logical consistency topological consistency	Count of invalid self- overlap errors	Count of items that illegally intersect or overlap with themselves.	Number of illegal intersects/ overlaps.	Integer	QE8

Appendix C – Catalogue of **Data Quality Measures**

Appendix D – Catalogue of Data Quality Evaluation Methods

XXVII FIG CONGRESS 11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Content of the Practical Handbook

QE-ID	QE-name	QE-type	QE-description	Remarks
QE1	Rate of occurrence	Different QE types	Calculated as percentage of occurrences of the total number within the scope.	QE type depending on quality unit.
QE2	Linear accuracy assessment	Direct external	 The difference between the dataset value, and the real-world value are calculated for each item. The RMSE is calculated from the differences. Gross errors are identified and removed. RMSE is recalculated without gross errors. 95% Confidence level values are calculated by multiplying with 1,96 	Values larger than 3 x RMSE (99,73 confidence level) are considered gross errors.
QE3	Two-dimensional positional accuracy assessment	Direct external	 The distances between the dataset positions (XY), and the real-world positions are calculated for each point. The RMSE is calculated from the distances. Gross errors are identified and removed. RMSE is recalculated without gross errors. 95% Confidence level values are calculated by multiplying with 1,7308 	XY-errors larger than 3 x RMSE (99,73 confidence level) are considered gross errors.
QE4	Point-Line positional accuracy assessment	Direct external	 The shortest distance from the measured point to the dataset line is calculated The RMSE is calculated from the distances. The Linear accuracy (QM2) is calculated 	See QE2

Volunteering for the future – Geospatial excellence for a better living

Content of the Practical Handbook

Appendix B – Complete example of specifications and quality report

a) Example of a **preliminary product specification** for road network

b) Example of a **quality assessment specification** for road network

- c) Example of a **quality reports** for road network:
 - Identification
 - Overview results of quality assessment
 - Statement of compliance

Quality unit 1: Format consistency - Road Network - Format conflict rate			
Quality elements	Logical consistency Format consistency		
Quality measure ID and name	QM1: Format conflict rate		
Scope	Dataset: Road Network		
Scope	Full inspection		
Conformance Level	All data shall adhere to the format rules.		
Quality evaluation method ID and name	QE1: Rate of occurrence		
Method type (QE-type)	Direct internal		
Overlith a with D. Tang la stand and statements. Date of Nationals, Date of Marchael, Country of statements			

Quality unit 2: Topological consistency - Road Network, RoadLink to RoadNode - Count of nonconformance coinciding lines and points

Quality elements	Logical consistency Topological consistency
Quality measure ID and name	QM4: Count of non-conformance coinciding lines and points
Scope	Relation: RoadLink to RoadNode
•	Full inspection
Conformance Level	All road links shall start and end in a road node
Quality evaluation method ID and name	QE8: Count of occurrence
Method type (QE-type)	Direct internal

.... QU3, QU4, QU5... QU20

11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

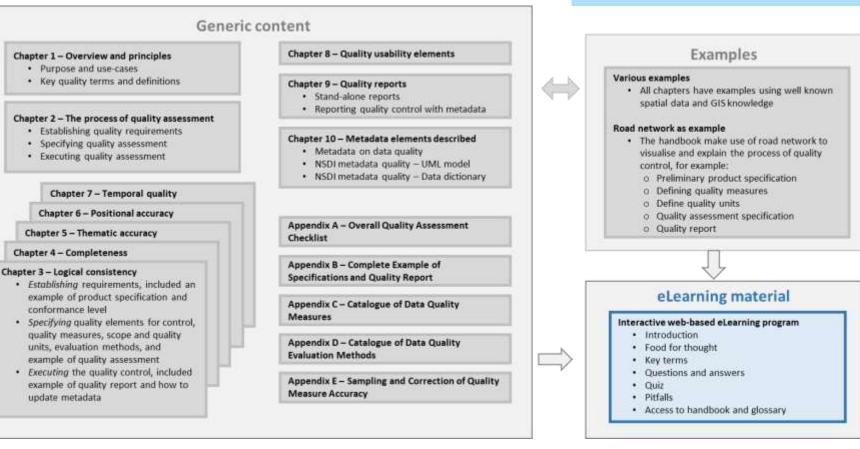
Content of the Practical Handbook

Appendix B – Complete Example of
Specifications and Quality Report

- a) Example of a **preliminary product specification** for road network
- b) Example of a **quality assessment specification** for road network
- c) Example of a **quality reports** for road network:
 - Identification
 Overview results quality assessment
 Detailed results quality assessment
 Statement of compliance

Quality unit 14: Absolute accuracy - Road Network, RoadNode, nodePosition (Z) – Linear			
absolute accuracy			
Quality element	Positional accuracy Absolute		
Quality measure	QM14: Linear absolute accuracy		
Feature / Attribute	RoadNode / nodePosition		
Population	22 205		
Sample	100		
Measured RMSE	± 3,25 m.		
Correction for sampling	1,12		
Correction for control accuracy	1		
RMSE for evaluation	± 2,90 m.		
RMSE conformance limit	± 2,55 m.		
95% confidence level for evaluation	± 5,68 m.		
95 % conformance limit (AQL)	± 5,00 m.		
Result	Fail		
Remark	None		

1 of 20 detailed results

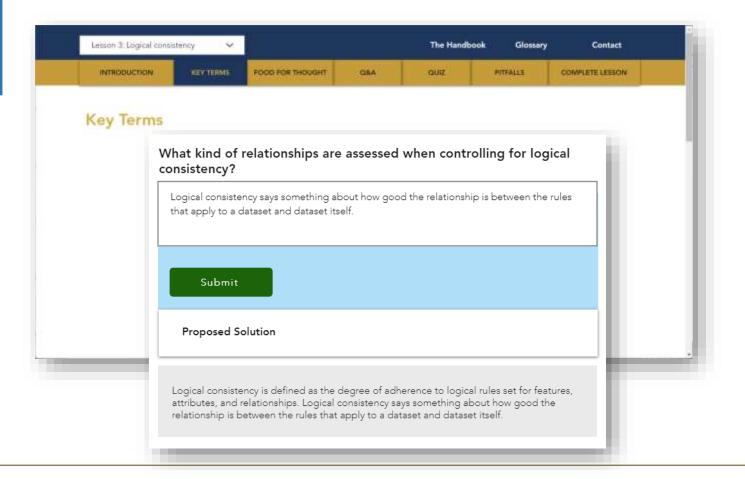


11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Content of the eLearning platform

Introduction Key terms
Food for thought
Questions and answers

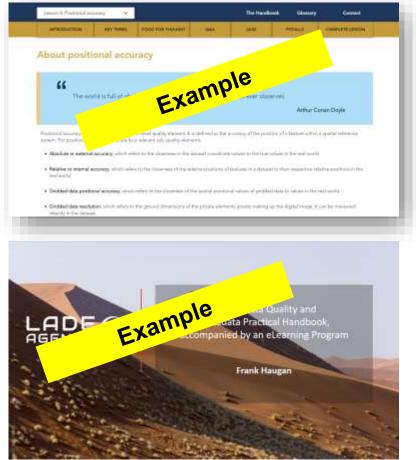

Quiz Pitfalls

Interactive web-based eLearning program

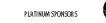
XXVII FIG CONGRESS 11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Content of the eLearning platform



Volunteering for the future – Geospatial excellence for a better living



Combine these three sources of information and you will have valuable insight to spatial data quality and quality control relevant to needs of the entity and the approval of SDI data.

Trimble

Volunteering for the future – Geospatial excellence for a better living

THANK YOU! QUESTIONS?

CONTACT DETAILS:

Frank Haugan, Director at Lade Agenda Ltd.

frank.haugan@ladeagenda.no

+47 97504773

