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SUMMARY  

Atmospheric water vapour is a critical and abundant greenhouse gas with significant 

implications for weather forecasting and climate monitoring. However, its spatial and temporal 

variability poses challenges to accurate observation. The low-latitude region, particularly 

Ghana, experiences large amounts and inhomogeneous water vapour content due to its 

proximity to the equator, making it susceptible to rapid weather changes over time. Severe 

weather forecasting in Ghana can be challenging due to the high spatiotemporal variability of 

water vapour. Water vapour content is under-sampled in the current meteorological and climate 

observing systems due to the lack of accurate, dense and continuous observation of water 

vapour data in Ghana, hampering the ability to keep track of water vapour in the atmosphere. 

To address this issue, the Global Navigation Satellite System (GNSS) offers continuous, 

accurate, and all-weather observations of water vapour through ground-based GNSS receivers. 

Ghana has seen an increase in the establishment and distribution of GNSS Continuously 

Operating Reference Stations (CORS), providing a more comprehensive dataset for retrieving 

and understanding Precipitable Water Vapour (PWV) in the country for meteorological and 

climatological applications. This study presents daily GNSS-derived PWV data from 49 

established GNSS CORS in Ghana, utilising GNSS observation data from 2020. The GNSS-

derived PWV values are compared with the fifth-generation reanalysis dataset from the 

European Centre for Medium-Range Weather Forecasts (ECMWF, ERA5) using various 

statistical measures, including Mean Bias (MB), Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE), and the correlation coefficient (R). The statistical analysis 

demonstrates that ground-based GNSS-derived PWV data in Ghana exhibit a high level of 

accuracy, with an overall mean bias, MAE, RMSE, and R of 1.29 mm, 1.96 mm, 2.48 mm, and 

0.948, respectively. These findings emphasise the reliability and precision of GNSS-based 

observations for monitoring atmospheric water vapour in Ghana, offering valuable insights for 

weather forecasting and climate research. 
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1. INTRODUCTION 

Water vapour is a crucial component of the Earth's atmosphere. It exists mainly in the 

troposphere below 12 km above sea level and plays a significant role in the Earth's energy 

balance, hydrological cycle, formation of clouds, temperature regulation, and precipitation 

(Chen et al., 2021; Huang, Peng, et al., 2021; Perdiguer-Lopez et al., 2023; Zhao et al., 2022). 

As the primary greenhouse gas in the atmosphere, water vapour also influences atmospheric 

radiation and circulation, affecting weather patterns, climate change, and variability (Chen & 

Liu, 2016; Kawo et al., 2022; Mannel et al., 2021; Ssenyunzi et al., 2020; Z. Wang et al., 2023). 

The presence of water vapour in the atmosphere varies greatly both in space and time (Rocken 

et al., 1993). These variations can cause sudden and drastic changes in local weather patterns, 

resulting in extreme weather and climate conditions such as thunderstorms, severe colds, floods 

and other violent atmospheric phenomena. Therefore, accurate knowledge and understanding 

of water vapour and its variability are crucial for improving weather forecasts, understanding 

climate dynamics and modelling, managing water resources, and assessing the impacts of 

climate change (Chen et al., 2021; Li et al., 2018; Yu et al., 2021).  

 

Ghana depends mainly on rainfall for its agricultural or farming activities, and accurate and 

timely meteorological information is crucial as the country is threatened by the downward push 

of the Sahara Desert (Fosu et al., 2007). Traditional meteorological observation methods, such 

as radiosondes and surface weather stations needed to provide accurate and timely forecasts, 

suffer limitations such as sparse spatial coverage, low temporal resolution, and high operational 

costs (Zhao et al., 2019). Ground-based Global Navigation Satellite System (GNSS) 

technology has emerged since the 1990s (Bevis et al., 1992) as a promising tool for atmospheric 

monitoring. 

 

GNSS signals suffer delays when propagating through the Earth's atmosphere. While these 

signal delays are mitigated for precise positioning, navigation and timing (PNT) applications, 

they can also be inverted for Precipitable Water Vapour (PWV) and other atmospheric 

parameters (Bevis et al., 1992). Precipitable water vapour (PWV) represents the total 

atmospheric water vapour content measured in a vertical column of air per unit cross-sectional 

area above a given location (Xu & Liu, 2022). GNSS has the advantage of high precision, high 

spatio-temporal resolution, cost-effectiveness, reliability, and continuous operation under all 

weather conditions with global coverage (Zhao et al., 2019). The accuracy of GNSS-derived 

PWV has been proven to be within 1–3 mm, comparable with the radiosondes observations 

(Bevis et al., 1992; Duan et al., 1996; Gui et al., 2017; Rocken et al., 1993). 

 

Ground-based GNSS for Meteorological Applications in Ghana (12701)

Samuel Osah, Akwasi Afrifa Acheampong and Osman Mohammed Abukari (Ghana)

FIG Working Week 2024

Your World, Our World: Resilient Environment and Sustainable Resource Management for all

Accra, Ghana, 19–24 May 2024



 

While GNSS technology has been explored globally for meteorological applications, its 

potential in Ghana remains untapped. Early works by Acheampong et al. (2015, 2017) used a 

single ground-based GNSS station at the Kwame Nkrumah University of Science and 

Technology (KNUST) in Kumasi, Ghana, to retrieve and analyse PWV. Though these studies 

provided valuable insights into PWV content, their scope was limited to a single location, and 

there is a lack of comprehensive research estimating PWV across multiple sites in Ghana. 

 

Recently, a nationwide network of GNSS Continuously Operating Reference Stations (CORS) 

has been established by the Licensed Surveyors Association of Ghana (LISAG) and the 

partnership between GMX Systems Israel and Geo-Tech Systems Ghana. Although these 

CORS were originally designed purposely for survey, mapping, geoinformation, and geodetic 

applications, they can be fully utilised to estimate accurate spatio-temporal variations of water 

vapour information for meteorological applications in Ghana. This study, therefore, 

investigates the accuracy and reliability of ground-based GNSS-derived PWV over 49 

networks of GNSS CORS spanning various geographical locations and climatic zones in Ghana 

for meteorological applications.  

 

2. METHODOLOGY 

This section outlines the methodology employed in this study. Section 2.1 describes the study 

area and its characteristics. Section 2.2 explains the data collection and processing procedures 

used in the study. The retrieval of Precipitable Water Vapor (PWV) from various data sources 

is detailed in Section 2.3. Section 2.4 outlines the analytical approaches used in the study. A 

workflow diagram summarising the main processes involved in the study is provided at the end 

of this section as shown in Figure 2. 

2.1 Study Area 

Ghana is situated along the west coast of Africa between latitudes 4° N and 12° N and 

longitudes 2˚E and 4˚W covering a land area of about 240, 000 Km2. Ghana shares boundaries 

with Burkina Faso to the north, Togo to the east, Côte d'Ivoire to the west, and the Gulf of 

Guinea to the south (Atiah et al., 2019; Bessah et al., 2022; Yamba et al., 2023). The Greenwich 

Meridian passes through eastern Ghana at Tema, the port city, at longitude 0⁰ and latitude 5⁰ 
north of the Equator. This position is considered nearest or closest (only a few degrees above 

the Equator) to the centre of the Earth, where the Equator and the Prime Meridian coincide at 

longitude 0° and latitude 0°, (0°, 0°). Thus, Ghana is believed to be the closest country to the 

Earth's centre. Due to Ghana's proximity to the Equator, it mostly experiences a tropical warm 

climate, where the country receives an abundant supply of sunlight year-round. Ghana's climate 

is characterised by two distinct seasons: the wet (rainy) and dry (harmattan) seasons, influenced 

by the West African Monsoon (WAM) and the Inter-Tropical Convergence Zone (ITCZ).  

Generally, Ghana is divided into six major agro-ecological zones: Sudan Savannah, Guinea 

Savannah, Forest Savannah Transition, Semi-Decideous Rainforest, High Rainforest and 

Coastal Savannah (Asare-nuamah & Botchway, 2019). However, for weather and climate 
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applications, the Ghana Meteorological Agency (GMet) has further divided the country into 

four main agro-ecological zones (Amekudzi et al., 2015; Baidu et al., 2017; Mensah et al., 

2016; Yamba et al., 2023). These are the Savannah, the Transition, the Forest, and the Coastal 

Zones. These zones, illustrated in Figure 1, are defined and characterised based on climate, 

vegetation and soil conditions. 

This study employed a network of 49 Continuously Operating Reference Stations (CORS) 

spanning 16 regions across Ghana. The specific locations and details of these 49 stations are 

visually represented in Figure 1. 

 

 
Figure 1: Map of Ghana showing the distribution of GNSS CORS. 

 

2.2 Dataset 

The study utilised daily datasets from GNSS observations and ERA5 reanalysis over 49 GNSS 

station networks in Ghana for eight months in 2022. Notably, the GNSS datasets exhibited 

substantial data gaps, and to enable a comprehensive analysis on a unified platform, a 

comparative assessment of the two datasets for each station was conducted. This resulted in 

extracting and organising corresponding days with available data for further analysis. This 

approach ensured that the study was based on complete and consistent data. 
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2.2.1 GNSS-ZTD Data 

Eight months datasets of GNSS observations, spanning from May 1 to December 31, 2022, 

were collected from the 49 GNSS CORS deployed across the various regions of Ghana (Figure 

1). The observation data in RINEX (Receiver INdependent Exchange) format was pre-

processed and quality-controlled with the TEQC (Translation Editing Quality Checking) 

toolkit (Estey & Meertens, 1999). The pre-processed data were then processed in the post-

processing static precise point positioning (PPP) mode using the latest up-to-date (Spark 

v3.54.2) Canadian Spatial Reference System PPP (CSRS-PPP) online service (Acheampong et 

al., 2017; Astudillo et al., 2018; Banville et al., 2021; Mireault et al., 2008; Tétreault et al., 

2005) provided by the Geodetic Survey Division (GDS) of the Natural Resources Canada 

(NRCan). Detailed information about the CSRS-PPP online service processing protocols can 

be found in (Mireault et al., 2008; Tétreault et al., 2005) and at https://webapp.csrs-scrs.nrcan-

rncan.gc.ca/. The processing options used via the CSRS-PPP service are given in Table 1. The 

processing results, including the positions, zenith hydrostatic delay (ZHD), zenith wet delay 

(ZWD), tropospheric gradients, receiver clocks, ambiguities, and code biases, are obtained via 

a URL (Uniform Resource Locator) link to users. The zenith tropospheric or total delay (ZTD) 

is obtained as: 

 

ZTD ZHD ZWD= +                                                                           (1) 

 
Table 1: The processing options for the CSRS-PPP service. 

Software Version                                                                   Spark v3.54.2 

Processing Mode                                                                  Static 

Constellation GPS 

Frequency L1, L2 

Observation Processed                                                          Code and Phase 

Observation Interval                                                             30 s 

Antenna model APC to ARP 

Reference Frame ITRF14 (2020.6) 

Cut-off Angle                                                                   7.5⁰ 
Satellite Orbits and Clocks                                                   IGS Final   

Phase-centre Corrections  IGS (ATX) 

Phase wind-up  Modelled 

Solid Earth and Polar Tides  Modelled 

Earth Rotation Parameters (ERP) Applied 

Ionospheric Model                                                                ionosphere-free linear combination 

Mapping Function VMF1 

Zenith Hydrostatic Delay (ZHD)                                          Estimated 

Zenith Wet Delay (ZWD)                                                     Estimated 

Zenith Total Delay (ZTD)                                                    ZHD +ZWD 
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2.2.2 ERA5 Reanalysis Data 

ERA5 is the fifth-generation European Centre for Medium-Range Weather Forecasts 

(ECMWF) reanalysis dataset, providing comprehensive information about land surface, ocean 

waves, and atmospheric parameters globally for environmental, climate, and weather studies. 

It is the latest climate reanalysis that replaces the ERA-Interim reanalysis, spanning 1979 to 

the present and generated from the Four-Dimensional Variational (4DVAR) data assimilation 

system based on the Integrated Forecasting System (IFS) Cy41r2 (Bell et al., 2021; Hersbach 

et al., 2020). ERA5 has higher spatial (0.25⁰ x 0.25⁰  (31 km) and 137 model levels) and 

temporal (1h) resolutions globally compared to ERA-Interim reanalysis (~80 km, 60 levels and 

6-h) (Dee et al., 2011; Zhang et al., 2022; Zhou et al., 2020). Generally, meteorological data 

from ECMWF reanalysis are provided on two vertical profiles: Pressure-Level (PL) and 

Surface-Level (SL). Site-specific data are obtained through interpolations from the profiles 

(Jade & Vijayan, 2008; Wang et al., 2016; Yang et al., 2020; Li et al., 2021). We acquired 

hourly ERA5 atmospheric parameters such as pressure (P), temperature (T), water vapour 

partial pressure (e), Weighted mean temperature (Tm), ZHD, ZWD, ZTD, and PWV using 
GMET (GNSS Meteorological Ensemble Tools) online service 
(http://gmet.users.sgg.whu.edu.cn/) provided by the Wuhan University (WHU), China. The 
GMET online service aimed to provide an interface to calculate meteorological parameters (P, 
T, e, Tm) at GNSS stations or user-defined sites from ERA5 reanalysis products for PWV 
retrieval using the open-sourced ray-tracing software RADIATE (Hofmeister & Böhm, 2017) 
by TU Wien (https://vmf.geo.tuwien.ac.at/). The parameter settings for estimating the 
meteorological and tropospheric parameters in this study from the GMET online service are 
summarised in Table 2. 
 
Table 2: GMET parameter settings for estimating meteorological and tropospheric parameters. 

Parameter Settings 

Software RADIATE (https://vmf.geo.tuwien.ac.at/) 

Data Source ERA5  

Temporal resolution 1 hour 

Input parameters 

Start time (UTC) 

End time (UTC) 

Site coordinates: latitude (°), longitude (°), height (m) in WGS 84 

E-mail 

Output parameters P [hpa] , T [K], e [hpa], Tm [K], ZHD, ZWD, ZTD [m], PWV [mm] 

 

2.3 PWV Retrieval from GNSS-ZTD and ERA5 Reanalysis Datasets 

2.3.1 Retrieval of PWV From GNSS-Derived ZTD 

The process of retrieving PWV from GNSS-derived ZTD typically involves two main steps 

(Chen et al., 2021): 
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1) ZHD subtraction: Subtracting the ZHD from the ZTD yields the ZWD. 

 

ZWD ZTD ZHD= −                                                                     (2) 

 

2) ZWD to PWV conversion: A conversion factor (Π) is applied to the ZWD to obtain 

the PWV. 

For the first step, the Saastamoinen model (Saastamoinen, 1972) is commonly used to 

compute the ZHD, which accounts for the hydrostatic component of the atmospheric delay 

caused by the dry gases in the troposphere. This empirical model estimates the ZHD based on 

atmospheric pressure, temperature, and the latitude of the GNSS station. The formula for ZHD 

calculation is as follows (Bevis et al., 1992; Saastamoinen, 1972): 

 

( )
0.0022779

,

s
P

ZHD
f H

ú
=                                                                     (3) 

( ) 2, 1 0.00266cos 0.00028f H H = − − ú                                       (4) 

Where: 

 ÿ(�, �) accounts for the variation in acceleration due to gravity at the station, Ps is the 

atmospheric pressure in hPa, φ is the latitude of the station in radians, and h is the station height 

above mean sea level in kilometres. 

 

For the second step, the conversion of ZWD, which accounts for the wet component of the 

atmospheric delay caused by the water vapour in the troposphere, is typically done using a 

dimensionless conversion factor (Π) that relates the two quantities and accounts for the 

weighted mean temperature (Tm) of the atmosphere. This factor can be determined through 

various methods, including local meteorological data, empirical models, or by using a 

climatological value based on the location of the GNSS receiver. The conversion formula is as 

follows (Bevis et al., 1994): 
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where �2′ = 22.1±2.2  þ//�� and �3 = 373900 ± 1200 þ2//�� are atmospheric refractivity 

constants, �� is density of liquid water (1000 þĀ/�3), �� is the specific gas constant for 

water vapour (461.525 ýþĀ−1þ−1), �� is the mean weight temperature, a function of 

temperature (Ts). We use �� from (Bevis et al., 1992) (referred to as BTm hereafter)  expressed 

as: 
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0.72 70.2
m s

T T= +                                                                                    (7) 

 

Ps and Ts were provided by ERA5 reanalysis data. Furthermore, the study employed the ERA5-

Tm values (referred to as ETm hereafter) to retrieve PWV from the GNSS-ZTDs to facilitate a 

comparative analysis of how well the Tm values from (Bevis et al., 1992) performed in 

obtaining PWV from GNSS observations as a means of ensuring the reliability of the empirical 

model for GNSS-PWV retrieval in the study area. 

2.3.2 PWV Retrieval from ERA5 Reanalysis Dataset  

The ERA5 reanalysis dataset is pivotal in meteorological applications owing to its extensive 

and consistent time-series data availability. The values of ERA5 PWV (ERA5-PWV) were 

derived using the GMET online service, as indicated in section 2.2.2. They can be computed 

utilising specific humidity and air pressure data from reanalysis datasets, as detailed by (Jiang 

et al., 2016; Xu et al., 2022): 
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Where n is the total number of layers, þ(�) denotes the specific humidity or mixing ratio (g/kg) 

of water vapour as a function of atmospheric pressure � (unit: Pa), integrated from the surface 

level (�þ) to the top of the atmosphere, e is the water vapour pressure (hPa), and þÿ, ýÿ are the 

specific humidity and air pressure at the ÿ�/layer, respectively. g represents the gravitational 

acceleration (m/s2), a function of site latitude (φ, unit: rad) (Wang et al., 2016; Yuan et al., 

2023). 

 

2.4 PWV comparison and analysis 

To assess the accuracy and reliability of GNSS-derived PWV estimations, daily average 

GNSS-PWV values were compared against the corresponding daily mean PWV products from 

ERA5. Four statistical metrics were employed in this evaluation: the standard deviation (STD), 

mean bias (MB), root mean square error (RMSE), and Pearson correlation coefficient (R). 

These metrics provide insights into the variability, systematic bias, overall error, and linear 

relationship between the GNSS-derived PWV and ERA5 PWV data. The metrics are expressed 

as follows:    
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Where �þýÿ�, �þýÿ��þþ, �þýÿ�ý�5 represent the ÿ�/ product (GNSS or ERA5) PWVs and  �þý̅̅ ̅̅ ̅̅ ̅  their respective means. N is the total number of observations. 
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Figure 2:Workflow of GNSS Precipitable Water Vapour retrieval procedure from GNSS CORS in Ghana. 

3. RESULTS AND DISCUSSION  

In this section, we analysed the agreement, consistency, reliability, and accuracy between 

Precipitable Water Vapor (PWV) values derived from GNSS observations and those from the 

ERA5 reanalysis dataset across four distinct ecological zones in Ghana: Savannah, Transition, 

Rainforest, Coastal. 

3.1  Comparing GNSS and ERA5 PWV Estimates over Ghana 

3.1.1 Spatial Distribution and Variability of PWV Over Ghana 

To assess the spatial variability of water vapour values over Ghana between GNSS and the 

ERA5 reanalysis data, the study focused on four agro-ecological zones categorised by the 

GMet. Figure 3 illustrates the spatial distribution of mean PWV values across these ecological 

zones. The results reveal that the GNSS-derived PWV pattern closely aligns with ERA5-PWV 

value across the ecological zones, with higher PWV values concentrated in southern regions, 

particularly the coastal and rainforest zones, and gradually decreasing towards the northern 

regions, the savanna zone. The Savanna exhibits the lowest mean PWV values across the two 

data sources. The lower PWV values in this zone are consistent with the dry semi-arid climate 
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characterised by prolonged dry seasons, reduced moisture availability, and limited 

precipitation. 

 

 
Figure 3: Spatial distribution of mean PWV values across ecological zones of Ghana derived from GNSS using the Bevis 

weighted mean temperature models (BTm) and ERA5 reanalysis data. The four ecological zones represented are the Savanna 

(light green), Transition (cyan), Rainforest (yellow), and Coastal (brown) zones. The colour bars on the right indicate the 

respective PWV value ranges for each dataset. 

 

The Transition zone shows slightly higher mean PWV values compared to the Savanna zone. 

These moderate PWV values suggest a comparatively higher amount of moisture in the 

atmosphere, likely due to increased vegetation cover, proximity to water bodies and the gradual 

transition towards a more humid climate as you move southwards. The Rainforest zone exhibits 

higher mean PWV values across all data sources. These high PWV values align with this zone's 

prevailing moist and humid conditions. The Coastal zone shows the highest mean PWV values 

among the four ecological zones. This pattern is consistent with the expected climatic 

behaviour in the coastal zone. Proximity to water bodies, oceanic influence, and higher 

humidity levels contribute to the observed elevated PWV values in the Coastal zone.  

 

3.1.2 Temporal Variation of PWV Over Ghana 

To further investigate the reliability and consistency of the GNSS-derived PWV values with 

ERA5-PWVs, PWV time series from both datasets over four selected stations representing the 

four ecological zones in Ghana are plotted in Figure 4, allowing a quantitative temporal 

comparison between GNSS and ERA5 PWV estimates at each ecological zone. 
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Figure 4: Time series comparison of PWV datasets from GNSS and ERA5 reanalysis at four stations representing the four 

ecological zones in Ghana: the Savanna, Transition, Rainforest, and Coastal zones over the study period.  

Figure 4 indicates that GNSS-PWV and ERA5-PWV datasets exhibit good overall agreement 

in capturing the daily and seasonal fluctuations of PWV content across all ecological zones. 

Even though the two datasets show similar trends and patterns, some differences were observed 

in the magnitude and timing of PWV peaks and troughs. The dissimilarities are most likely due 

to the spatial resolution of ERA5 data and the inherent differences between point-based GNSS 

measurements and gridded reanalysis data. In the Savannah (TUMU) and Transition (GS17) 

zones, GNSS-PWV tended to have higher peaks and lower troughs compared to ERA5-PWV. 

This could be due to sparse observational data from data assimilation systems, which leads to 

less accurate reanalysis outputs. In contrast, in the Rainforest (LISAG_ADUM) and Coastal 

(LISAG_TAKO) zones, occasional differences in the magnitude of PWV values were 

observed, with GNSS-PWV sometimes showing higher or lower values compared to ERA5-

PWV. This could be attributed to more consistent local climatic conditions and better model 

performance due to denser data inputs. 

 

3.1.3 Accuracy Assessment of GNSS-derived PWV with ERA5 PWV 

To assess the precision and accuracy of GNSS-derived PWV estimates across different 

ecological zones in Ghana, we analysed five key statistical evaluation metrics: standard 

deviation (STD), mean bias (MB), mean absolute error (MAE), root mean square error 

(RMSE), and correlation coefficient (R). The statistical analysis is based on daily average PWV 

values and the number of datasets at individual stations using ERA5-PWV values as the 
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reference. The results are presented in Table 3, summarising the overall mean STD, MB, MAE, 

RMSE, and R for each ecological zone. This provides a comprehensive overview of how well 

the GNSS-derived PWV values perform in comparison to the ERA5 reanalysis data. 

 
         Table 3: Statistical Comparison of GNSS and ERA5-Derived PWV over the four ecological zones in Ghana. 

ZONE 
STD 

(mm) 

MB 

(mm) 

MAE 

(mm) 

RMSE 

(mm) 
R 

Savanna 4.31 1.62 2.16 2.77 0.920 

Transition 5.24 1.31 1.57 1.89 0.967 

Rainforest 6.26 1.40 2.33 2.96 0.949 

Coastal 6.86 0.81 1.80 2.29 0.956 

Average 5.67 1.29 1.96 2.48 0.948 

 

The results in Table 3 show varying levels of accuracy and precision across the zones. These 

differences can be attributed to factors such as variations in vegetation, topography, climate, 

atmospheric conditions, and the performance of ERA5 in certain regions in terms of data 

quality, observational data coverage, and data assimilation system. The STD quantifies the 

degree of variation or dispersion of measurement error distribution, with a low standard 

deviation indicating high precision. The STD values are higher in the rainforest (6.26 mm) and 

coastal (6.86 mm) zones when compared to the savannah (4.31 mm) and transition (5.24 mm) 

zones. This indicates greater fluctuations in atmospheric moisture content over time in the 

rainforest and coastal zones, which aligns with their climatic characteristics, such as convective 

activity and oceanic influence. 

 

The MB measures the average deviation of a measured value (GNSS-PWV) from the actual 

value (ERA5-PWV), indicating whether measurements are higher or lower than the actual 

values. Negative and positive MB values represent underestimation and overestimation, 

respectively. MAE gives the average magnitude of errors between the GNSS and ERA5-

derived PWV without considering the direction of the errors. The RMSE gives an overall 

measure of accuracy by indicating how closely GNSS-PWV values match ERA5-PWV values. 

The lower the MB, MAE, and RMSE values, the closer the GNSS-PWV values are to the 

ERA5-PWV values, and the better the agreement or accuracy. Table 3 shows smaller positive 

MB values across all the ecological zones, implying that GNSS has minimal systematic 

overestimation over Ghana. The highest MB value is seen in the savannah zone with 1.62 mm, 

followed by the rainforest zone with 1.40 mm, and the transition zone with 1.31 mm. The 

smallest MB value is seen in the coastal zone with 0.81 mm. The minimal MB values across 

all the zones indicate that GNSS-PWV is consistent with ERA5-PWV over Ghana. The MAE 

and RMSE values are also low across all zones, indicating good overall agreement between 

ERA5 and GNSS-derived PWV. The transition zone has the lowest MAE (1.57 mm) and 

RMSE (1.89 mm), indicating the best accuracy in this zone. This is followed by the coastal 

zone with an MAE of 1.80 mm and RMSE of 2.29 mm. The savannah zone has slightly higher 
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MAE and RMSE values of 2.16 mm and 2.77 mm, respectively, compared to the rainforest 

zone, with the highest MAE (2.33 mm) and RMSE (2.96 mm) values. 

 

R expresses the degree of relationship or association between the GNSS-PWV and ERA5-

PWV, ranging from –1 to +1. An R-value of 0 denotes no correlation, while a value closer to 

1 signifies a stronger positive linear relationship between the two datasets. The results in Table 

3 demonstrate consistently high R-values ranging from 0.92-0.967 across all zones, indicating 

a strong positive correlation between ERA5-PWV and GNSS-PWV. The Transition zone has 

the highest R-value (0.967), followed by the coastal zone (0.956) and the rainforest zone 

(0.949). The Savanna zone has the lowest R-value (0.920).  

 

The overall average statistics, as shown in Table 3: STD of 5.67 mm, MB of 1.29 mm, MAE 

of 1.96 mm, RMSE of 2.48 mm, and R-value of 0.948 across Ghana show that GNSS-derived 

PWV data aligns closely with ERA5 reanalysis data. The observed bias, RMSE, and R 

magnitudes are within acceptable ranges and consistent with previous studies (Hai et al., 2011; 

Hu et al., 2021; Huang et al., 2021; Wijaya et al., 2024). This suggests that GNSS-PWV 

measurements are generally reliable and accurate for climatological and meteorological studies 

and operations (Huang et al., 2021; Wang et al., 2013) in Ghana.  

 

4. CONCLUSIONS 

This study has comprehensively evaluated the accuracy and reliability of ground-based GNSS 

for precipitable water vapour (PWV) estimation across various ecological zones in Ghana. 

Analysing GNSS observations from a network of 49 CORS across the country, we found strong 

agreement between GNSS-derived PWV and ERA5-derived PWV with minimal systematic 

overestimation across all ecological zones. While some differences were observed, likely due 

to the inherent limitations of reanalysis data and the point-based nature of GNSS 

measurements, the statistical analysis revealed high precision and accuracy of GNSS-derived 

PWV with an overall mean STD, bias, MAE, RMSE, and R of 5.67 mm, 1.29 mm, 1.96 mm, 

2.48 mm, and 0.948 respectively, over Ghana. The low mean bias, MAE, and RMSE values, 

along with the strong positive correlation coefficient, indicate the reliability and consistency of 

GNSS as a valuable tool for meteorological applications in Ghana. Thus, the GNSS technology 

offers a robust alternative to conventional meteorological methods, enhancing the accuracy of 

Ghana's weather forecasting and climate analysis. 
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