

Fiji Geodetic Datum Surveys, Data Handling and Compilation

Andrick Lal Pacific Community (SPC) Pacific Geospatial & Surveying Council (PGSC) Partnership Desk Email: andrickl@spc.int

PLATINUM SPONSORS

CHCNAV

esticia 6–10 April

Brisbane, A

Australian Government

Acknowledgement

Ministry of Lands and Mineral Resources of the Government of Fiji would like to acknowledge the good support and kind assistance provided by the Climate and Oceans Support Program in the Pacific (COSPPac) supported by Government of Australia and Geoscience Australia to complete the geodetic surveys of the islands in Fiji, from November 2019 to February 2020 and the compilation of data and information for the modernisation of the Fiji Geodetic Datum from March to December 2021.

This activity of "Geodetic Data Compilation" was generously successful through the COSPPac program staff; the Geodetic Unit, based in the Oceans and Maritime programme at the Geoscience, Energy and Maritime Division of the Pacific Community (SPC). Since there was COVID-19 lock down, this activity was well executed during this time frame.

The survey equipment donated by Geoscience Australia, to the SPC PGSC Partnership Desk, enabled the project survey activities and the capacity for surveyors.

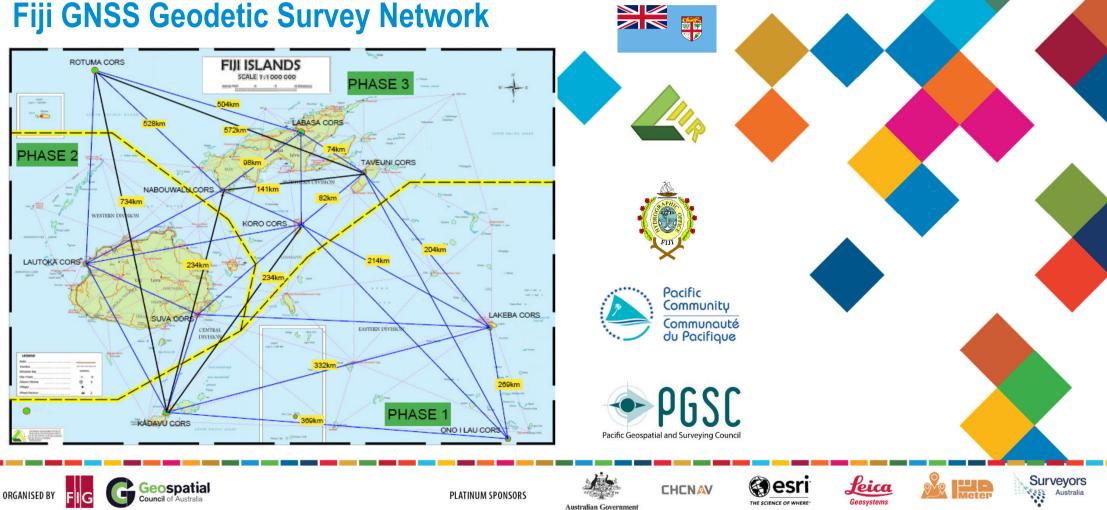
The COSPPac program has been supporting the Pacific Geospatial & Surveying Council (PGSC) since November 2014. SPC has established the PGSC Partnership Desk to provide support and assistance in the geospatial and surveying activities in the region

Introduction

Fiji moved the motion at the United Nations General Assembly 2015 for a global geodetic reference frame for sustainable development, the Resolution (A/RES/69/266) "A Global Geodetic Reference Frame for Sustainable Development" was adopted by the United Nations General Assembly in its 80th plenary meeting held on 26th February 2015. This reference framework has already been used by many developed countries including Australia and New Zealand in defining their new geodetic datum based on ITRS, with Fiji, to adopt, align and modernize its geodetic datum and following the ten-year regional strategy (2017 -2027), for the Pacific Geospatial and Surveying Council Strategy Goal 2; Countries across the pacific region to adopt the Global Geodetic Reference Frame (GGRF) and improve technology underpinning geospatial systems and applications.

A cabinet memorandum – "Modernizing Fiji's Geodetic Datum" (CP (15)169) dated 29th August 2015, by the Minister for Lands and Mineral Resources was accepted and endorsed by cabinet via decision no. 207. An approved budget of FJ \$2,546,560 for three years, enabled the Ministry to embark on this very important project and with approval from the cabinet, the Control Section was able to implement the activities for the Global Geodetic Reference Frame.

To modernise the Fiji Geodetic Datum, the Control Section of Lands & Survey Department of Fiji, has developed its geodetic infrastructure, with the establishment of the GNSS CORS network and to reinforce the geodetic survey network, established geodetic survey benchmarks were occupied during the survey campaign.



Brisbane, Australia 6-10 April

Fiji GNSS Geodetic Survey Network

Activities

The activities towards data compilation, manipulation, and delivery of all the survey data and information; in detail, the following tasks were completed for data handling: -

- Download all the GNSS survey data from the survey campaigns and the GNSS CORS
- Download all the UAV data from the field surveys for the survey campaign (Phase 1)
- Check, verify and validate GNSS survey datasets and make correctness for occupation time, antenna height, file format, file type, file structure and point ID of all the individual geodetic stations.
- Convert all the GNSS raw survey data (Leica, Hi-Target and Trimble) of the survey campaigns in RINEX format using the converter utility tool
- · Complete the locality diagram pages and the field occupation sheet for as per individual geodetic stations
- Collect and complete the metadata table of the geodetic stations as per type, original coordinates, origin of survey, geodetic datum
- Complete the occupation summary report of all geodetic stations
- Complete the RINEX data summary report as per individual geodetic stations
- Record all the geodetic survey data sets accordingly for post processing and analysis
- Upload all the RINEX data for all the individual geodetic stations on AUSPOS
- Assess and provide options for good data handling, data accessibility, data storage and archive, data management of all the GNSS survey data and GNSS CORS

PLATINUM SPONSORS

CHCNAV

Surveyors

Australia

Brisbane, Australia 6-10 April

Geodetic Survey Campaign Data

ANT ANT EODETIC ontrol Survey-FJ	0210329 221704 UTC PGM / R MARKER I MARKER I MARKER I MARKER OBSERVEI	NAME NUMBER				
707722 LEICA GS16 8. LEIGS16 8.	.00 REC # / ANT # /	TYPE / VERS				
-6063994.3539 159513.6132 -1964444.5071	1 APPROX 1	POSITION XYZ				
1.6450 0.0000 0.0000 L1 0.0000 0.0000 0.0887		: DELTA H/E/N : PHASECENTER				
L2 0.0000 0.0000 0.0887	7 ANTENNA	PHASECENTER				
5 12 C1C L1C D1C S1C C2W L2W D2W S2W C5Q 8 C1C L1C D1C S1C C2P L2P D2P S2P		OBS TYPES OBS TYPES			5	
BHZ	SIGNAL S	STRENGTH UNIT				
30.000 2019 12 10 23 10 30.00000	INTERVA DO GPS TIME OF	L FIRST OBS				
2019 12 10 23 10 30.000000 2019 12 11 05 13 0.000000 0	DO GPS TIME OF	LAST OBS				
		CK OFFS APPL HASE SHIFT				
		HASE SHIFT HASE SHIFT				
	END OF 1	HEADER				
2019 12 10 23 10 30.0000000 0 16 01 23778627.820 124957531.11917 -2	2916.145 45.400	23778630.960	97369513.58216	-2272.323	38.250	
03						
	2912.435 49.150 3097.857 48.200	21955017.440 22815078.180	89902120.66717 93423925.09516	2269.430 -2413.923	42.950 37.100	
11 24733025.500 129972922.42516 -3	3185.299 41.250	24733024.540	101277615.48415	-2482.049	35.150	
	-579.053 46.250 -389.286 53.900	23889302.200 20945998.440	97822693.33915 85770359.98917	-451.208 -303.340	32.450 43.400	·
19 21788405.740 114498844.87318	96.593 49.100	21788403.640	89219867.86917	75.268	42.200	
22 24865290.680 130667986.03116 28 20804085.620 109326206.60818	65.336 38.200 870.145 49.700	24865292.680 20804084.520	101819216.35416 85189247.36516	50.909 678.035	37.300 38.850	
30 20667682.980 108609406.51418 -1	1464.509 52.600	20667684.700	84630708.96017	-1141.176	44.300	
	3373.314 45.900 -648.081 49.650	23297251.620 19737654.200	96794231.95016 81976196.52517	-2623.686 -504.064	36.350 41.900	
13 19737650 260 105397949 85418 _		20403283.380	84591871.99016	2199.678	37.800	
14 20403280.000 108760962.25518 2	2828.159 50.350					
14 20403280.000 108760962.25518 2 17 20291907.160 108586092.16118 1	1345.448 52.700	20291910.540	84455861.71817	1046.460	46.250	
14 20403280.000 108760962.25518 2 17 20291907.160 108586092.16118 1				1046.460 -2915.888		

PLATINUM SPONSORS

Australian

Australian Government

Geodetic Survey Capacity

A total of forty (40) survey operators attended the training held at the Geodetic Survey Office, the training went on, from setting up to powering the equipment and measuring – tracking satellites and storing the raw data on the equipment. Also, in addition to this all operators were required to fill the log sheets accordingly. As part of the GNSS geodetic operations workshop, attachment with SPC (GEM division) on data management, processing and online training (training with GA on CORS operation), with the COVID-19 lockdown, the survey personnel were able to build capacity in the following: -

- GNSS CORS infrastructure, geodetic survey campaign data and metadata
- Maintenance and operationalisation of the GNSS COR station
- Handling and management of GNSS CORS data, geodetic survey campaign data and metadata
- Project scope, necessary requirements and documentation of the geodetic survey campaign
- Capacity in field survey procedure
- Raw data conversion to RINEX format
- Online data processing AUSPOS data submission and requirements
- GNSS equipment operations ability to use different GNSS survey equipment
- Proper data manipulation (slicing, combining and decimate, etc)

PLATINUM SPONSORS

Leica Geosystems

Brisbane, Australia 6-10 April

Geodetic Survey Capacity

- Use of different converter utility tools and software: -
 - TEQC (UNAVCO)
 - Trimble RINEX converter
 - Leica Geo Office
 - Trimble Business Centre
 - Hi-Target Geo Office
- Online resources
 - Antenna calibrations (https://geodesy.noaa.gov/ANTCAL/)
 - Four-character point ID checks (http://sopac.ucsd.edu/checkSiteID.shtml)
 - RINEX data formatting (point ID, antenna type, antenna height, antenna code, version)
- Next steps for the GNSS CORS and the geodetic survey data management

PLATINUM SPONSORS

Surveyors Australia

Geodetic Survey Data and Information

The following survey datasets and information packages that was checked, verified, reviewed and validated by the Control Section and Geodetic Unit of SPC and will be further post processed and analysed: -

- RINEX Data for the geodetic stations and GNSS CORS.
- Field Sheets
- Locality Diagram Pages
- Geodetic Survey Station metadata (station coordinates, source files, occupation summary)
- Historical Survey Information
- AUSPOS Reports

PLATINUM SPONSORS

CHCNAV @esri

Surveyors Australia

Brisbane, Australia 6-10 April

Fiji Geodetic Survey Stations – GNSS CORS

Station ID	Location	Station Type	Source	Establish By	Year
LAUT	Drasa Ave, Lautoka, Viti Levu	GNSS CORS	PSLGMP	PSLGMP	2002
SUV1	Suva, Viti Levu	GNSS CORS	SPC	SPC	2018
LABC	Labasa, Vanua Levu	GNSS CORS	LANDS	Control Office	2018
NABC	Nabouwalu, Vanua Levu	GNSS CORS	LANDS	Control Office	20 18
TAVC	Taveuni, Vanua Levu	GNSS CORS	LANDS	Control Office	2018
KORC	Koro Island	GNSS CORS	LANDS	Control Office	2018
LAKC	Lakeba, Island	GNSS CORS	LANDS	Control Office	2018

PLATINUM SPONSORS

Leica Geosystems

1 SPONSORS

Brisbane, Australia 6-10 April

GNSS Survey Data Conversion

Leica Geo Office Export Utility Trimble Convert to RINEX Utility LEICA Geo Office - [Project phase 1 (7 days)] File Import Edit View Tools GPS-Proc Export Window Help New folder EE -? 🗅 🖆 🗿 🔃 🐚 🛍 🔯 🍳 🍳 🍭 🥎 🔗 👙 N 🐟 🕸 🔅 🕐 🛬 🔀 🔁 🖄 🖽 👘 🏟 🕼 N 84 🏩]]_ **Open Documents** Point Id Navigated 11/10/2019 10:47:3 Point ... Start Cicia ^ Name ? × MATU ,Æ Hi-Target Geomatics Office to RINEX Utility 09473140.T02 Navigated 11/10/2019 10:48:3 Save In: B Desktop MOAL - + 🗈 💕 📰 Cikobia i Lau UNAV Navigated 11/10/2019 10:55:31 ONOI Navigated 11/10/2019 11:00:41 Name Hi-Target Geomatics Office (HGO) - C:\HGO Pro Size Type Gau Navigated 11/10/2019 11:11:4 CIKI File(F) Baseline(B) Adjust(N) Tool(T) Options(O) Help(H) System Folder Navigated 11/10/2019 11:50:12 - Network LULU Open New Mine & ConvertRine System Folder Kadavu Navigated 11/10/2019 11:54:31 OGEA - Seagate Expansion Drive (D:) 3726 GB Local Disk Source File C:\Users\User\Desktop\Geodetic Datum Raw data\CORS Data\CORS DATA V2\ Open(0) ODRI Navigated 11/10/2019 11:54:31 Project 2 Datum System Folder Lakeba RSD File Open(O) VATO Navigated 11/10/2019 12:00:1 desktop 2021 File folder R OGEA Navigated 11/10/2019 16:40:20 Output folder C:\Users\User\Desktop\Geodetic Datum Raw data\CORS Data\CORS DATA V2\ File folder New Project final Log Sheets ODRI Navigated 11/10/2019 16:40:20 RINEX Setting File Setting Geodetic Datum Raw data File folder Navigated 11/11/2019 05:22:0 CIKI Version 2.11 ~ Marker Name NABC System Folder Matuku Open Project NAKO Navigated 11/11/2019 07:30:3 System 🗹 GPS Antenna Height 2.406 ONOI Navigated 11/14/2019 03:30:10 Moala Navigated 11/15/2019 18:01:4 Project Properties Measure to Ref.Point(Slant) CIKI Galleo MOAL Navigated 11/17/2019 08:22:50 True Height 2.406 Include I SNR New folder < Coordinate Parame Doppler Antenna Name AT-53501 Enable L5IG3 C:\Users\User\Desktop Path: Ogea Driki Interval 30 v FIJI CORS File name: INAV313# 190 Save Convert(C) Start Time (GPST) 2019/02/17 22:33:14 Ono I Lau Save as type Rinex files (version 3.02) V Cancel End Time (GPST) 2019/02/18 11:30:21 Import Separate files for different tracks Open Output Folder(F) Tuvana i ra Process Baseline RINEX Antenna heigth Antenna Phase Center Ignore windows Network Adjustmen Create new file every GNSS Type: All Raw GNSS Data Export 24 🔶 hrs NABC0490.GNS Convert finished Observer: Control 🔀 0 Error | 🛕 0 Alarm File name: Details Agency: Survey-FJ English Surveyors Leica esri Geospatial CHCNAV Australia ORGANISED BY PLATINUM SPONSORS Council of Australia THE SCIENCE OF WHERE Geosystem Australian Government

Brisbane, Australia 6-10 April

Fiji Geodetic Survey Occupation Summary

Station ID	Start time	Duration	File Name	RINEX Version	Receiver Type	Antenna Height	Antenna Method	ARP Height	Antenna Type
CEVA	10/11/19 1200hrs UTC	7days	16633153.190 16633133.190 16633140.190 16633201.190	3.02	Trimble R10	1.642	BQR	1.692	TRMR10
KADV	10/11/19 1200hrs UTC	7days	42703140.190 42703150.190 42703160.190 42703170.190 42703180.190 42703190.190 42703200.190	3.02	Trimble Net R9	1.978	BON	1.934	TRIMBLE ZEPHYR MODEL 2
NAKO	10/11/19 1200hrs UTC	7days	NAKO3140.190 NAKO3140.190 NAKO3150.190 NAKO3160.190 NAKO3170.190 NAKO3180.190 NAKO3190.190 NAKO3200.190	3.02	Leica GS10	1.265	Hook Height	1.625	LEIAS10

PLATINUM SPONSORS

Leica Geosystems

W SPONSORS

Australian Government

Brisbane, Australia 6-10 April

Geodetic Survey Station Coordinates

Station ID	Latitude	Longitude	Ellipsoidal Ht.	Source
LAUT	S 17 36 31.71375	E 177 26 47.69618	89.655	AUSPOS # 8548
SUV1	S 18 06 55.94150	E 178 27 14.89659	102.169	AUSPOS # 8548
LABC	S 16 26 08.61637	E 179 24 36.67287	124.801	AUSPOS # 8548
NABC	S 16 59 35.06579	E 178 41 25.97184	112.152	AUSPOS # 6729
TAVC	S 16 47 54.41640	W 179 59 44.63888	140.275	AUSPOS # 8548
KADC	S 19 02 47.62361	E 178 09 57.05379	104.950	AUSPOS # 8548
ROTC	S 12 29 57.73022	E 177 02 46.26410	75.197	AUSPOS # 8548

GNSS CORS

Station ID	Easting	Northing	Zone	Ht. above Geoid	Source
TUVR	307989.620	7673224.618	1	4.046	AUSPOS # 8970
C111	253330.661	8036782.110	1	160.5142	AUSPOS # 7732
CIJ1	252765.206	8038903.104	1	2.955	AUSPOS # 5935
CP02	252813.696	8038550.954	1	26.685	AUSPOS # 4475

NEW Survey Stations

PLATINUM SPONSORS

Leica Geosystems

Geodetic Survey Station Coordinates

Station I	D	Latitude		Longitude		Ellipsoidal Ht.	Sc	ource	
CEVA		N 21 44 10.55	5364	E 174 37 57.47920	E 174 37 57.47920		G	A Record2008/04, SO6	450
KADV		S 19 07 05.31	825	E 177 59 17.45239		860.5357	G	A Record2008/04	
NAKO		S 17 56 49.79	28	E 179 17 55.0587		142.0013	EE	Z Report - Northern	
UNAV		S 18 11 14.34	92	W 178 46 47.5921		112.6458	EE	Z Report - Northern	
СІКІ		S 17 17 0.142	7	W 178 47 33.4089		208.6234	EE	Z Report - Northern	
	Station ID Easting		5	Northing			Orthometric Ht.	Source	
	KADV 1919868.03		3765411.97			805.3	TD88		
	NAł	(0	20580	6.05 3895		3895100.72		89.62	SO 4274
	OAL	A	21246	27.20 382		325511.38		302.53	SO 4274
	UN	٩V	/ 2261331.88 3		386	3866850.50		59.77	SO 4347

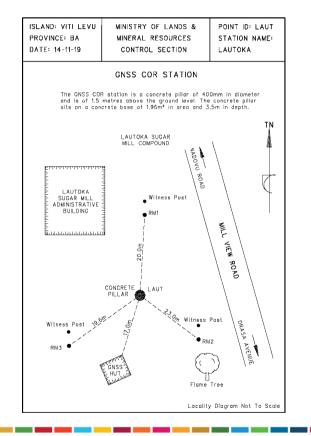
PLATINUM SPONSORS

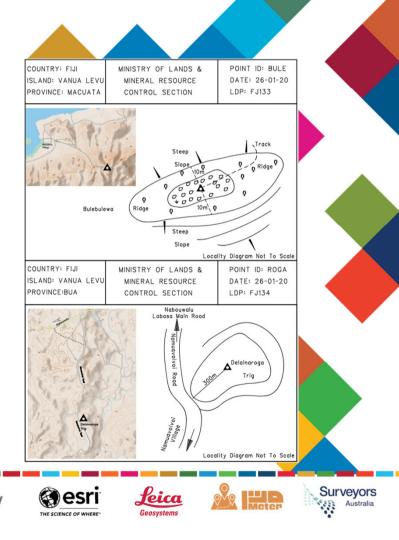
Secience & Construction

Brisbane, Australia 6-10 April

Geodetic Survey Campaign Metadata

		Fiji	Geo	odetic Stat	ions Surv	ey C	amp	aigr	n Meta	lata		
Station ID	Station Name	Occupation Period	Interval	Receiver Type	Antenna Type	Rinex Versio n	Vertical Ht (m)	Rinex Height	Antenna Method	Firmware	Checked By	Field Operators
LAUT	Lautoka	Continuous	1sec	SEPT POLARX5	JAVRINGANT_DM	5.2.0			ARP			GA
SUV1	Suva	Continuous	1sec	Trimble NetR5	TRM55971.00	4.19			ARP			SPC
LABC	Labasa	Continuous	1sec	VNET10T-D	HI-TARGET AT-53501	3.02			ARP	CJ00		CONTROL
NABC	Nabouwalu	Continuous	1sec	HI-TARGET VNET10T-D	HITAT53501(HITS)	3.02			ARP	CJ00		CONTROL
TAVC	Taveuni	Continuous	1sec	HI-TARGET VNET10T-D	HITAT53501(HITS)	3.02			ARP	CJ00		CONTROL
KORC	Koro	Continuous	1sec	Leica GR50	Leica AR20	3.02			ARP	4.11.606		CONTROL
LAKC	Lakeba	Continuous	1sec	Leica GR50	Leica AR20	3.02			ARP	4.11.606		CONTROL
ONOC	Ono-i-Lau	Continuous	1sec	Leica GR50	Leica AR20	3.02			ARP	4.11.606		CONTROL
KADC	Kadavu	Continuous	1sec	Leica GR50	Leica AR20	3.02			ARP	4.11.606		CONTROL
ROTC	Rotuma	Continuous	1sec	Leica GR51	Leica AR21	3.02			ARP	4.11.606		CONTROL
CEVA	Ceva-i-ra	7 DAYS	1sec	TRIMBLE R10	TRMR10	3.02	1.642	1.692	Bottom of Notch	4.81	MT&MR	Poate
BUKE	Delainabukelevu (Kadavu)	7 DAYS	30sec	TRIMBLE NET R9	TRM557971.0	3.02	1.978	1.934	Bottom of Notch	5.37	MT&MR	Sakumeni
NAKO	Nakorowaro (Gau)	7 DAYS	30sec	LEICA GS10	LEIAS10	3.02	1.265	1.625	Hook height	5.05	MT&MR	Sisa
OALA	Korokoli (Moala)	7 DAYS	10sec	LEICA GPS 1200	LEIAX1202	2.11	1.404	1.764	Hook height	4.0	MT&MR	Navitalai
UNAV	Lakeba(GPS - Yadrana)	7 DAYS	1sec	LEICA GS16	LEIGS16	3.02	1.38	1.740	Hook height	8.0	MT&MR	Jesoni
СІКІ	Cikobia-i-lau	7 DAYS	15sec	LEICA GS10	LEIAS10	3.02	1.333	1.693	Hook height	5.05	MT&MR	Gabiriele
LULU	Cokalulu (Cicia)	7 DAYS	10sec	TRIMBLE NET R9	TRM557971.0	3.02	1.751	1.707	Bottom of Notch	4.85	MT&MR	Daniel
мтки	Matuku	7 DAYS	30sec	LEICA GPS 1200	LEIAX1202	2.11	1.263	1.623	Hook height	4.0	MT&MR	William C
OGEA	Ogea Driki	7 DAYS	30sec	LEICA GPS 1200	LEIAX1202	2.11	1.185	1.545	Hook height	4.0	MT&MR	Livi
VATO	Vatoa	7 DAYS	30sec	LEICA GPS 1200	LEIAX1202	2.11	1.272	1.632	Hook height	4.0	MT&MR	Niko





Brisbane, Australia 6-10 April

Geospatial Data Management

STATION NAME	NAKOROWARO
4 CHARACTER	ID: NAKO
LOCATION: VI	ONE, GAU, LOMAIVITI
COUNTRY: FI	JI
TYPE OF SURV	EY MARK: BRASS PLAQUE IN CONCRETE
	HEIGHT OF SURVEY MARK:
OBSERVATION	START DATE/DAY: 10/11/2019
	UTC TIME: 1931hrs
OBSERVATION	END DATE/DAY: 17/11/2019
	UTC TIME: 0001hrs
GNSS RECEIVE	R TYPE: LEICA
	MODEL: LEICA GS10
	SERIAL NUMBER: 1532578
	FIRMWARE VERSION: 5.05
	TYPE: LEICA
	MODEL:LEIAS10
	SERIAL NUMBER: 667126
HEIGHT OF GN	SS ANTENNA ABOVE STATION MARK: 1.265m (VERTICAL MEASUREMENT)
DESCRIPTION	OF THE POINT ON THE GNSS ANTENNA
THAT THE ANT	ENNA HEIGHT REFERS TO:
	HOOK HEIGHT
	ANTENNA HEIGHT TO ARP - 1.625m

ORGANISED BY FIG Geospatial Council of Australia

Challenges

- Data downloading and backup GNSS CORS data was not downloaded immediately after the completion of each phase, also backup copies were not stored in a remote location; it was still in the server, which collapsed.
- GNSS CORS setup was not configured to IGS Standards and Guidelines.
- Missing information from field survey sheets e.g., heights, equipment type, photos, etc
- Timely and accurate compilation of geodetic survey data
- Data Gaps due to disruptions of GNSS COR station failure from natural disasters and internet connectivity
- Capacity limited knowledge in conversion of GNSS Raw data to RINEX of Leica, Hi-Target and Trimble.
- Internet connectivity during data processing (difficulty in upload AUSPOS)
- GNSS COR stations data handling, data access, data storage, and data management
- Capacity on operations and management of GNSS CORS
- Timely provision of data after geodetic survey campaign
- Lack of IT support importance of GNSS CORS data
- Software and firmware issue for Vnet platform for GNSS CORS, LGO for multiple users, upgrade LISCAD license

Brisbane, Australia 6-10 April

Lessons Learnt

- Better management and maintenance of the GNSS CORS
- Capacity building in geodetic survey data handling and management
- Consultations with all relevant stakeholders
- Better communications within teams
- Project ownership and commitment from project staff
- Proper planning for fieldwork
- Importance of documenting relevant and accurate information on field sheets, localities.
- Visibility for future projects

PLATINUM SPONSORS

CHCNAV

esri

Surveyors Australia

Work in Progress

- Geodetic survey data processing, analysis and network adjustment using AUSPOS, TBC, LGO, DynAdjust and Bernese.
- Capacity building in geodetic survey data processing, analysis, and network adjustment.
- Technical Reports Geodetic Surveys
- Definition of transformation parameters and develop tools for transformations
- Transformation and alignment of all the geospatial data, information and products (survey plans and topographic maps) from the Fiji Map Grid 1986 to the new datum.
- Awareness and visibility of the new Fiji Geodetic Datum 2020
- Installation of the Tide Gauges, to be co-located with the GNSS CORS
- Develop and establish the vertical reference frame with pole to gauge calibrations
- Develop and establish reference marks at the GNSS CORS sites, for monitoring surveys
- Precision levelling surveys from the GNSS CORS to the Tide Gauge Stations

Work in Progress

- Maintenance plan for the GNSS CORS and site
- Capacity building needs in ICT and electronics of the GNSS CORS
- GNSS CORS data management plan and strategy for handling, accessibility, sharing.
- Solutions and results of the GNSS CORS to analysis for land velocity
- Inclusion of GNSS CORS to be part of the APREF and IGS network
- Upgrade the GNSS CORS for Network RTK capability
- Develop and maintain archive data sets for all the GPS/GNSS observations in the past, current and in future
- Seek opportunity to establish and develop Fiji's geoid model.
- Geospatial Policy, incorporating the Fiji's Geodetic Reference Frame
- Fiji Geodetic Reference Frame Database incorporated into VanuaGIS (Online GIS Portal)

