Implementing Reinforcement Learning via Markov Decision Process (MDP) for Wind Shelter Modelling: A Precursor to the Dynamic Line Rating (DLR) Technology Trial in Queensland's Transmission Network

Power

Rudolf Espada Spatial Officer Powerlink QLD

Technical Contributors Paul Cullen, Transmission Line Strategies Team Leader Debashis Paul, Senior Electrical Design Engineer

Outline of Presentation

- Introduction
- Methodology
 - Data Requirements
 - PQ Infrastructure Built Section, Conductor Height, Ground Span
 - Vegetation
 - Wind
 - Aspect
 - Relative Topographic Position
 - Analytical Framework
 - Ground Span Level Wind Shelter Scoring
 - Pixel Level Finding Optimal Criticality
- Results
- Accuracy Assessment
- Challenges & Limitations
- Takeaway Message

Introduction

Powerlink QLD

- Queensland Government owned corporation one of Australia's leading transmission network companies.
- We own, develop, operate and maintain the **high voltage transmission** network.
- We provide electricity to more than **five million Queenslanders** and **250,000 businesses**.
- Our network runs **1,700km** from north of Cairns to the New South Wales border.
- Comprises 16,500 circuit kilometres of transmission lines and 196 substations

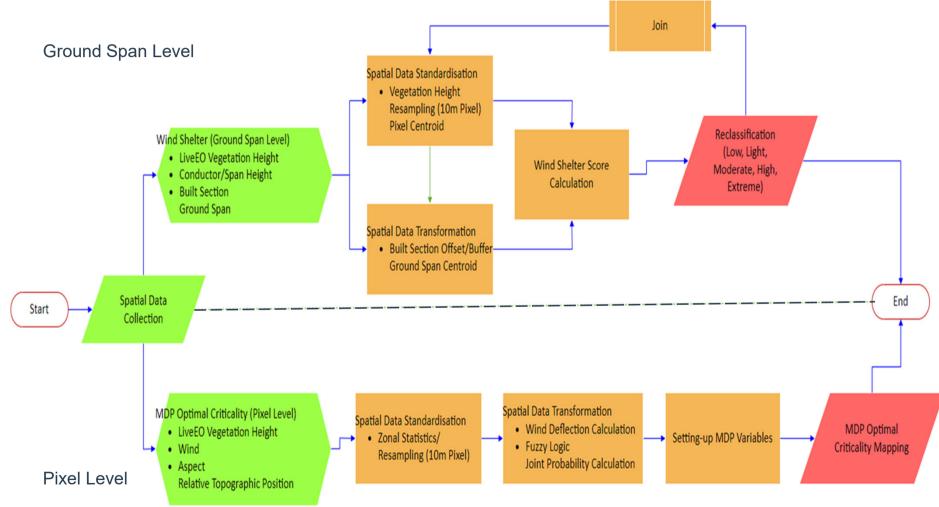
Introduction

- Develop network-wide spatial modelling tool that will assist in identifying critical spans
- Real-Time Ratings Technology Trial Project
 - to identify critical locations of sensor technology and weather stations along transmission lines and corridors

Methodology

Data Requirements

Table 1. Spatial data availability, resolution, and respective sources


Data/Factors	Associated Data	Source	Temporal Statistics	Spatial Resolution
PQ Infrastructure	Built Section, Span	PQ Enterprise		NA
Data	Height, Ground Span	Spatial Database		
Vegetation	Foliage Projective	TERN	Annual (2021)	10m
	Cover	QLD-Long		
		Paddock		
	Vegetation Height	PQ/Live-EO	Annual (2023)	NA
Relative	Topographic	Geoscience	(2018)	~90m
Topographic	Position	Australia		
Position				
Elevation	DEM	Geoscience	(2000)	1 Second Grid
		Australia		(~30m)
	Slope	Generated		1 Second Grid (~30m)
	Aspect	Generated		1 Second Grid (~30m)
Wind	Eastward Wind	ECMWF*	36 years of monthly	0.25° x 0.25°
	Speed		ERA5 (1985-2020)	
	Northward Wind	ECMWF*	36 years of monthly	0.25° x 0.25°
	Speed		ERA5 (1985-2020)	
	Wind Direction	Calculated		

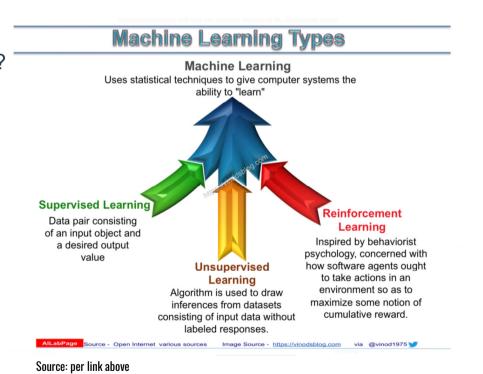
*Bureau of Meteorology (BoM) has partnered with the European Centre for Medium-Range Weather Forecasts (ECMWF) to collaborate and share data, knowledge sharing and capabilities exchange (Source: <u>Australian Bureau of Meteorology partners with</u> <u>ECMWF | Meteorological Technology International</u>).

Methodology

Overall Analytical Framework



Ground Span Level


Wind Shelter Scoring and Classification by Ground Span

What's going on within & around Ground Span?

- Ground span is a scene-level analysis
 - aimed at labelling each patch/ground span polygon with a semantic class based on its content (i.e. scoring & degree of sheltering)
- Can we further label each pixel with a class to refine our action/decision and find optimal policy?
- Implement Reinforcement Learning (RL) using Markov Decision Process (MDP)
 - stochastic dynamic programming to model sequential decision-making
 - applied in robotics, engineering, energy regulation, hydropower-reservoir operations, risk management, land-use planning, etc.

Pixel Level (Solving Optimisation Problem)

Finding Optimal Policy using Markov Decision Process (MDP)

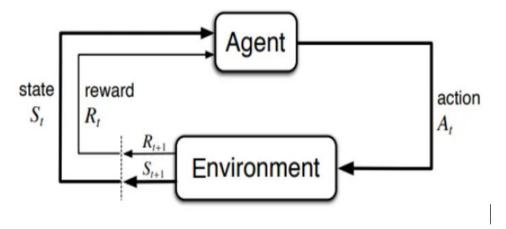
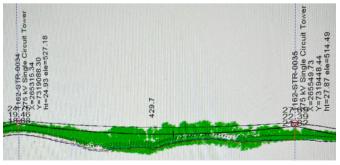


Figure 2. The agent-environment interaction characterizing the Markov Decision Processes (MDP) Source: <u>Sutton and Barto (2017). Reinforcement Learning: An Introduction</u>

- MDP Variables (SATR)
 - a finite set of states $s \in S$.
 - a finite set of actions $a \in A$
 - a transition function *T* (*s*'|*s*,*a*) returning the probability of reaching state *s*', given the current state *s*, the current action *a*
 - a reward function *R* (*s*,*a*,*s*') returning a scalar reward based on reaching the new/next state *s*', after being in state *s*, and taking action *a*.



Defining the MDP Variables

Wind Shelter Score

- Current and New State Variables
 - Wind shelter scores and classification as the current State/Condition (s)
 - Scoring was generally guided (not all) by EPRI's technical documentation
 - Classification from Debashis

Wind Shelter Score (%)	Classification
0 – 25	Low
26 – 40	Light
41 – 75	Moderate
76 – 95	Heavy
> 95	Extreme

Source/Acknowledgment: Debashis Paul

Power

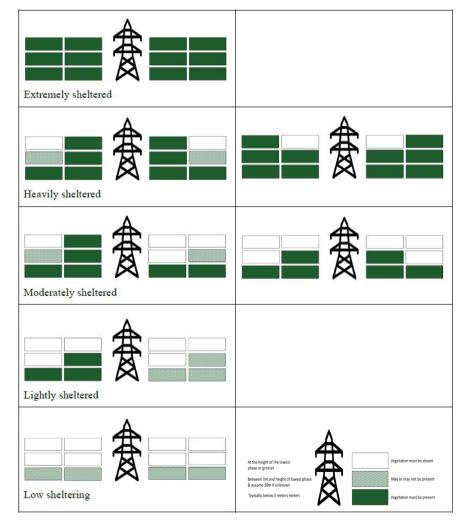


Figure 3. Obstruction based on vegetation height and radial distance (Adopted from EPRI Technical Update, 2023)

11

Defining the MDP Variables

Wind Shelter Score

- Current State Variable (*s*)
 - 5 current states/conditions
 - Low
 - Light
 - Moderate
 - High
 - Extreme

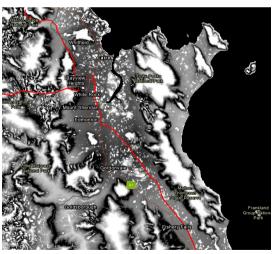
Wind shelter score histogram

• Real-time rating sensor requires heavily sheltered or vegetated areas


WAR Variables

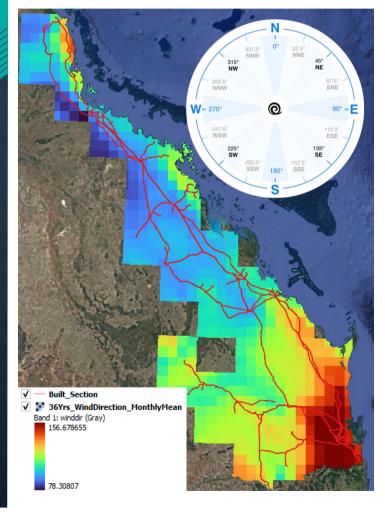
- New State Variable (s')
 - 5 new states/conditions
 - Low
 - Light
 - Moderate
 - High
 - Extreme

Real-time rating sensor requires:


- Uneven topography
- Steep slopes & rough terrains (i.e. leeward/windward sides) winds must deflect/flow freely.
- South-facing slopes with low influx of solar energy

Wind Deflection (W)

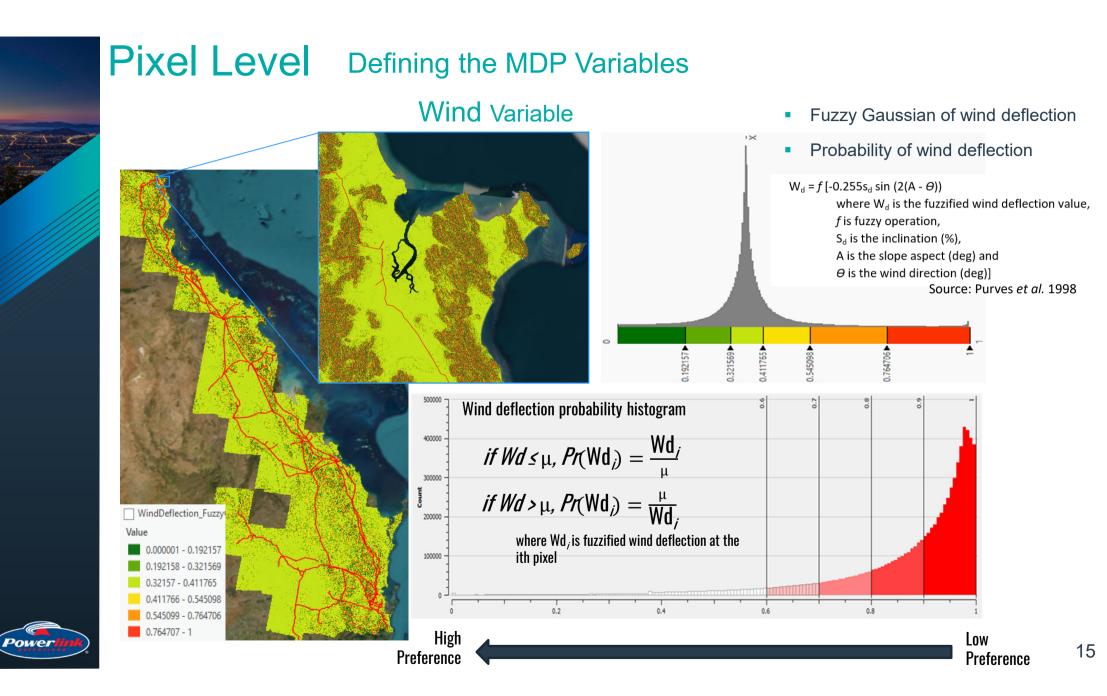
Aspect (A)



Relative Topographic Position (R)

Power

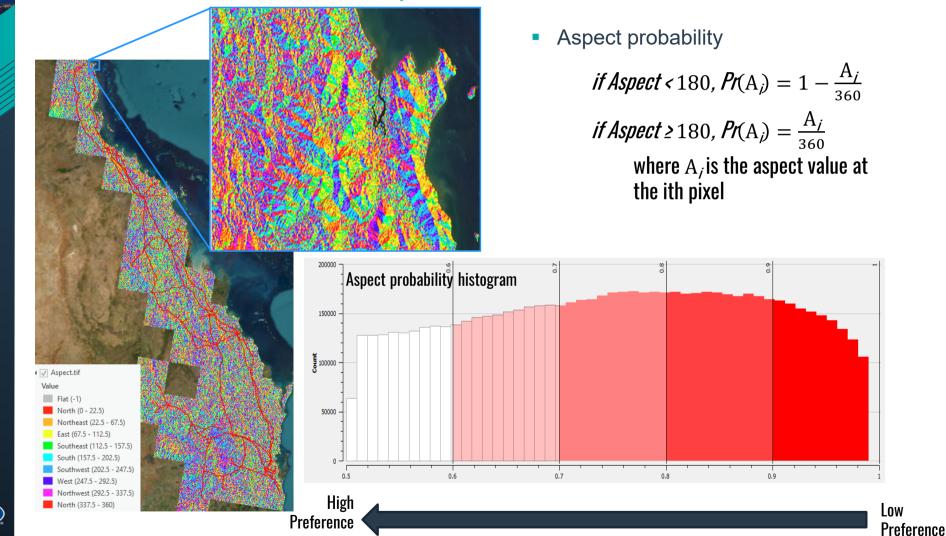
Wind Variable


Defining the MDP Variables

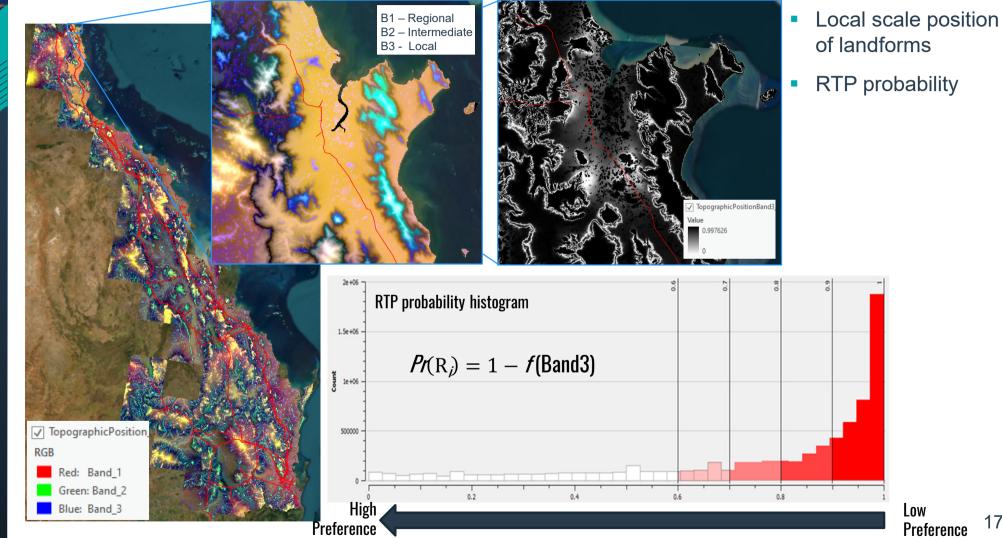
- BoM ECMWF partnership
- ERA5 36 years

Date Coverage (1985-2020) ECMWF ERA5 Monthly Area of Interest

Calculate Wind Direction - *u10* component (m/s – 10m) - *v10* component (m/s – 10m)


Get the Monthly Mean

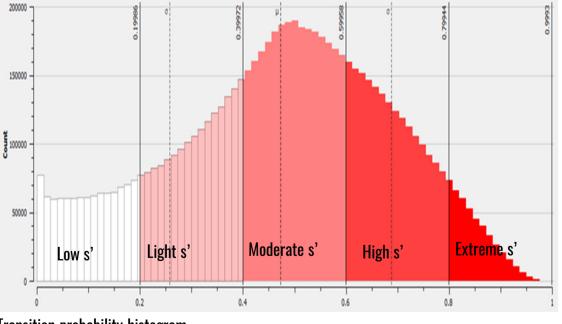
Power


Defining the MDP Variables

Aspect Variable

Pixel Level Defining the MDP Variables Relative Topographic Position (RTP) Variable

Power


17

Defining the MDP Variables

- Transition Probability [T(s,a,s')]
 - $T_{i}(s_{i,ai} s_{i}) = [1 WS_{i}] \cap [Pr(WAR_{i})]$

where

WS; is current state wind shelter score at the ith pixel $Pr(WAR) = Pr(Wd) \cap Pr(A) \cap Pr(R)$ at the ith pixel

What to do with WAR probabilities and preferences?

New State/ Condition (s')	Description
Low	Low WS, Wd, even RTP & north- facing aspect
Light	Light WS, Wd, RTP & NE/NW-facing aspect
Moderate	Moderate WS, Wd, RTP & E/W- facing aspect
High	High WS, WD, RTP & SE/SW-facing aspect
Extreme	Extreme WS, Wd, RTP & south- facing aspect

Transition probability histogram

Defining the MDP Variables

- Actions (a_i) and Rewards $(R(s_i, a_i, s'_i))$
- Discounting Factor [$\mathcal{Y} \in [0, 1)$] = 0.9

New State/ Condition (s')	Description	Reward (R(s; a; s';)	Actions/ Assigned Criticality (a _i)
Low	Low WS, Wd, even RTP and north-facing aspect	-10	Low-Critical
Light	Light WS, Wd, RTP and NE/NW- facing aspect	-5	Lightly Critical
Moderate	Moderate WS, Wd, RTP and E/W-facing aspect	0	Moderately Critical
High	High WS, WD, RTP and SE/SW- facing aspect	+5	High-Critical
Extreme	Extreme WS, Wd, RTP and south-facing aspect	+10	Extremely Critical

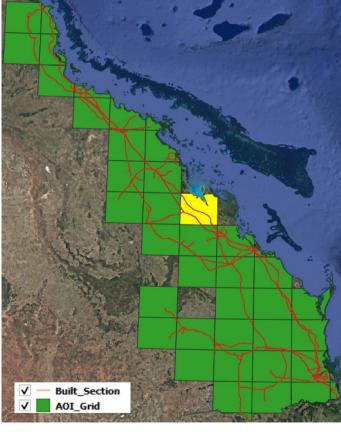
- Organised & processed the MDP matrix in R
- Value iteration
- Finding optimal policy/criticality
 - Bellman Equation

Initialize V(s) arbitrarily, for all $s \in S$ Initialize θ to a small positive value

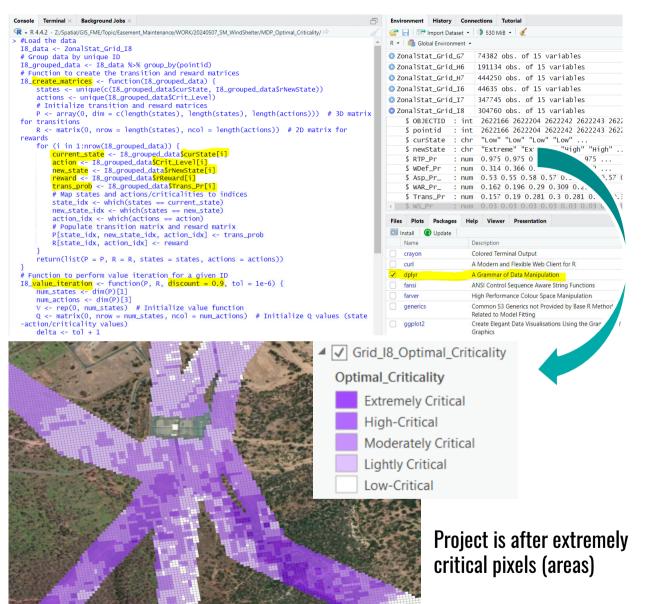
Loop:

 $\begin{array}{c} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathcal{S}: \\ v \leftarrow V(s) \\ V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')] \\ \Delta \leftarrow \max(\Delta,|v-V(s)|) \end{array}$ Until $\Delta < \theta$

Output a deterministic policy, $\pi \approx \pi *$, such that $\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a)[r + \gamma V(s')]$


Source: Bettosi (2023)

Completed MDP Matrix


19

- Solving MDP Optimal Criticality
 - 41 MDP grids


<u>Wind Shelter Web Map</u>

Power

Accuracy Assessment

- Ground Span Level
 - missed 180 out of 27,001 spans (99.33% capture ratio)
 - manual corrections

Before manual correction

After manual correction

- Pixel Level
 - 1:1 match/correspondence between pre-defined actions and the resulting optimal criticalities
 - Subject to interpretation and decision appetite

Challenges & Limitations

- Complex process and computationally intensive
- Up-to-date availability of spatial data
- Use of variable spatial data resolution
 - Data were resampled to 10m pixel size
- LiveEO's vegetation height
 - maximum value of the data range was used as the height of pixel centroid
- MDP action-reward pairing and optimal criticality are subject to interpretation.

Takeaways

- Integral part of project policy and decision-making (where, how many sensors, how much \$\$\$)
- Strengthened collaboration between Spatial and Transmission Line Strategies

Thank you!

