

Future challenge in the calibration of high-resolution hydrographic multi-sensor systems

Annette Scheider, Annika L. Walter, Ellen Heffner, Harald Sternberg

PLATINUM SPONSORS

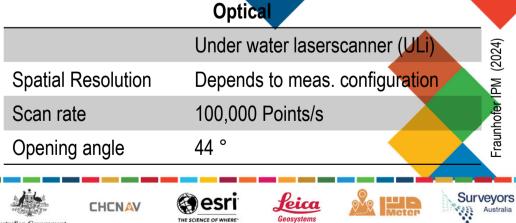
Surveyors Australia

Council of Australi

Brisbane, Assticia 6-10 April

Australian Government

Brisbane, Australia 6-10 April

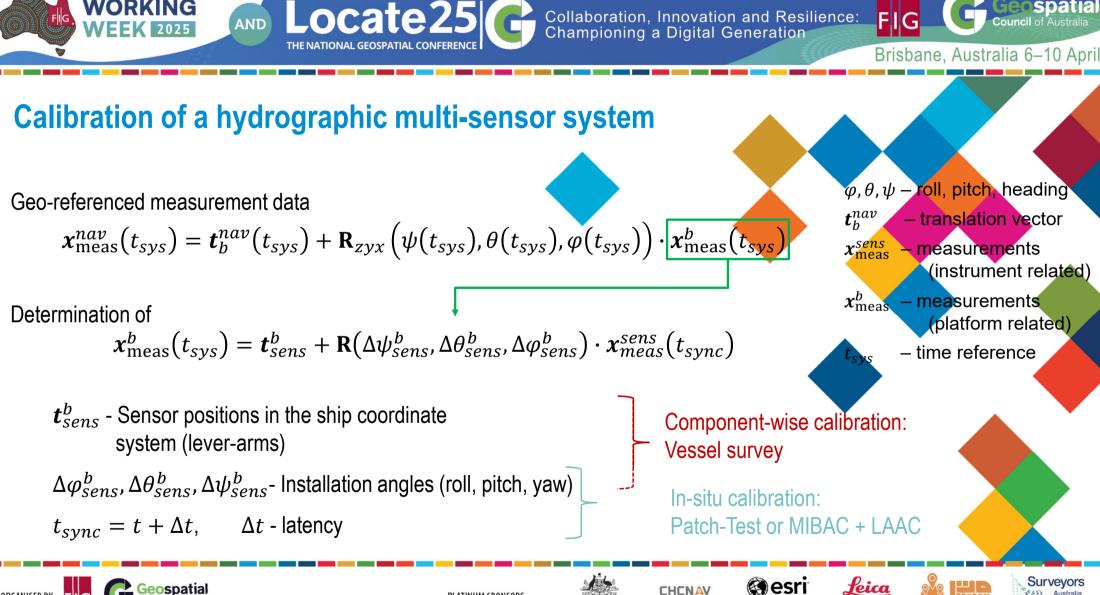

High-resolution underwater instruments

Use in shallow water environments

Acoustic

	Kongsberg EM 2040P MKII	(1000)	2 4)
Beam width	≥ 0.6° (@ 700 kHz)		_
Number of pings	256	dando	ongsperg
Swath width	100 – 120°(@600 kHz)	2	2

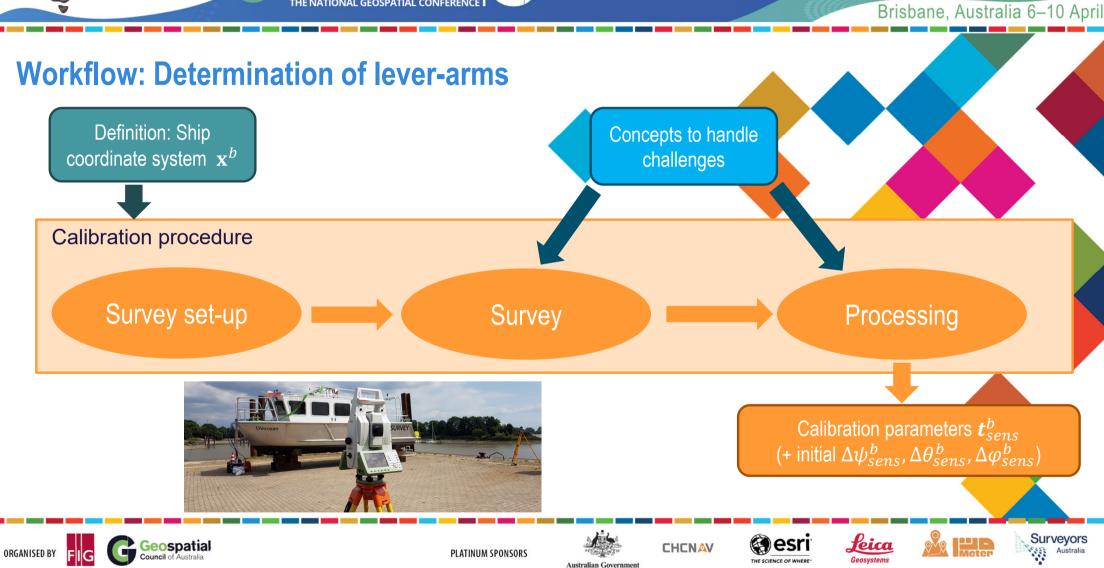
PLATINUM SPONSORS



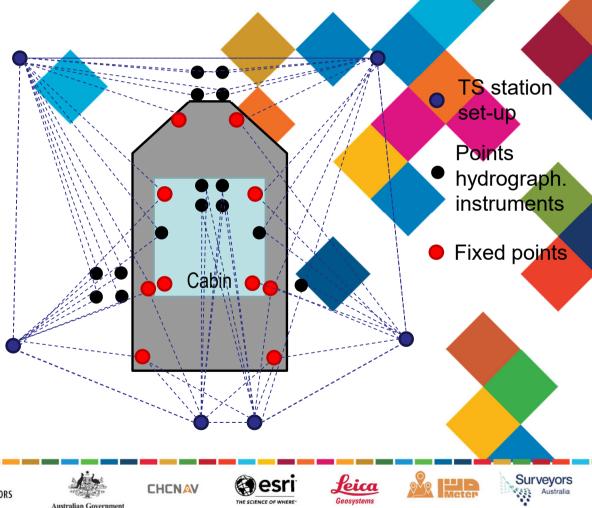
Geospatial Council of Australia ORGANISED BY

WORKING

PLATINUM SPONSORS


Surveyors Australia

spatia



Brisbane, Australia 6-10 April

Calibration: Survey

- Objective: 3D accuracy \leq 5 mm or even 0.5 mm (Brüggemann 2013)
- Use of a high-precision total station (TS) or a laser tracker (LT)
- Set-up of a geodetic network around the ship \rightarrow clear line-of-sight to each sensor point from multiple instrument stations
 - \rightarrow measurements in both faces and multiple sets
- Defined fixed points on the ship → transformation into ship coordinate system

PLATINUM SPONSORS

Brisbane, Australia 6-10 April

Processing

- Objective: Determination of the coordinates by network adjustment
 → requires elimination of outliers (e.g. instable points)
- Strategies: Depending to the measurement site
 → Constrained Adjustment
 - \rightarrow Free Adjustment: Control of fixed points

Challenges:

- Points which are difficult to access/hidden
- Instable points
- Limited space
- .

PLATINUM SPONSORS

sri <u>Lei</u>

ΕI

eica Infinity

Software:

Brisbane, Australia 6-10 April

F١

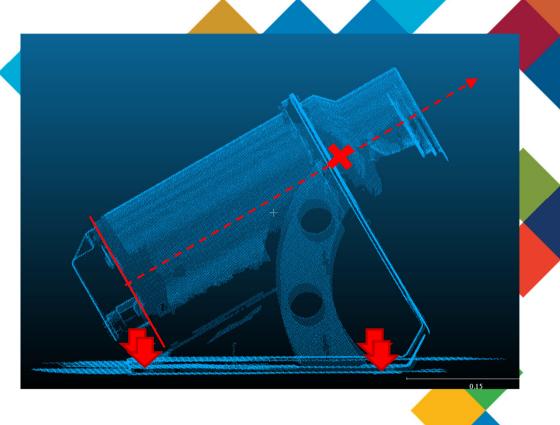
Concept: ULi reference point

- ULi reference point inside the housing problem: no marked known points
- Idea: Calibration with adapter frame
 → four known points available (ship coordinate system)

Leica Geosystems

Surveyors Australia

Brisbane, Australia 6-10 April


Concept: ULi reference point

Calibration with adapter frame

Scan of the instrument and adapter frame
 → use of a high-precision scanner

here: AS1 / Laser tracker AT960 (Hexagon)

- Determination of
 - the cylinder axis \rightarrow Uli reference point
 - Screw fitting positions
 - → known points in the ship coordinate system

PLATINUM SPONSORS

Surveyors Australia

Brisbane, Australia 6-10 April

Summary & Outlook

- Calibration of a hydrographic multi-sensor system is required regularly and if e.g.,
 - The instrument configuration has been changed
 - New Instruments are installed
 - → Efficient calibration procedure is required
- Determination of calibration parameters for a surveying vessel requires high-precision instruments (total station and/or laser tracker)
- Line-of-sight obstructions and limited space on the vessel require special concepts to acquire all measurement points with the required accuracy
- Future: Design and realization of a mobile underwater test field for shallow water applications
 → In-situ calibration

PLATINUM SPONSORS

Brisbane, Australia 6-10 April

References

Brüggemann, T. (2013). Ingenieurgeodätische Fragestellungen bei der Einmessung von Vermessungsschiffen. In: Bundesanstalt für Gewässerkunde (ed.): Neue Entwicklungen in der Gewässervermessung, Colloquium on Nov. 21./22. 2012 in Koblenz, Germany, pp. 32-40, Veranstaltungen 5/2013, Koblenz, May 2013, DON 10.5675/BFG Veranst 2013.5

Fraunhofer IPM (2024). Underwater LiDAR System Optical inspection of underwater infrastructure. URL https://www.ipm.fraunhofer.de/de/gf/objekterfassung-laserscanning/anw/unterwasser-lactscanning/unterwasserinfrastruktur.html (last access 2025-03-29)

Kongsberg (2024). EM 2040P MKII – Multibeam Echo Sounder. URL: https://www.kongsberg.com/discovery/seafloormapping/em/EM2040P-MkII/ (last access 2025-03-29)

PLATINUM SPONSORS

CHCNAV

Leica

Brisbane, Australia 6-10 April

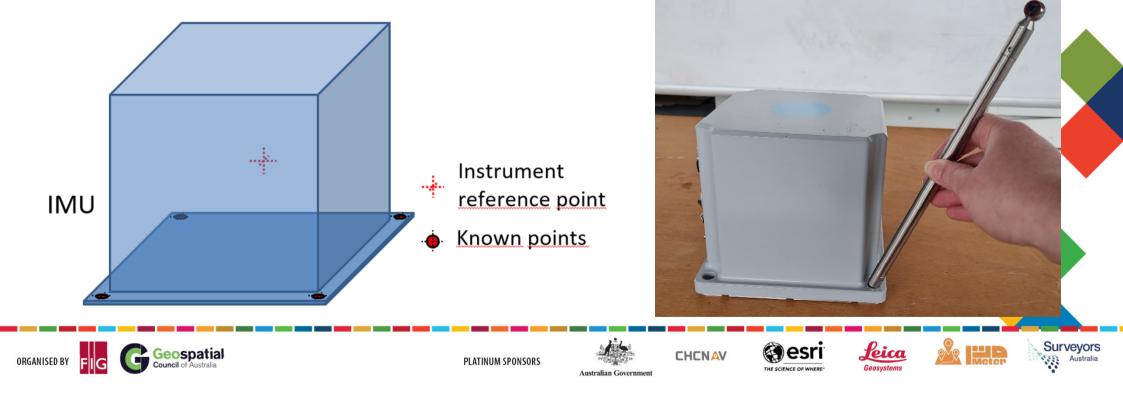
Thanks for your attention! 1/11 HafenCity Universität Contact: Dr.-Ing. Annette Scheider HafenCity University Hamburg **Geodetic Laboratory** Annette.scheider@hcu-hamburg.de

PLATINUM SPONSORS

Leica Geosystems

Brisbane, Australia 6-10 April

STEP 1: SELECT HERE THE THREE MOST RELEVANT SDGS STEP 2: COPY THE SDG INTO PREVIOUS SLIDE **3** GOOD HEALTH AND WELL-BEING 4 QUALITY EDUCATION 6 CLEAN WATER AND SANITATION AFFORDABLE AND Clean Energy 8 DECENT WORK AND ECONOMIC GROWTH **9** INDUSTRY, INNOVATION AND INFRASTRUCTURE 1 NO POVERTY 2 ZERO HUNGER GENDER EQUALITY 5 13 CLIMATE ACTION **16** PEACE, JUSTICE AND STRONG 10 REDUCED INEQUALITIES SUSTAINABLE OFFICE 12 RESPONSIBLE CONSUMPTION 14 LIFE BELOW WATER 15 LIFE ON LAND **17** PARTNERSHIPS FOR THE GOALS AND PRODUCTION INSTITUTIONS \sim Surveyors Leica esri Geospatial Council of Australia CHCNAV Australia ORGANISED BY PLATINUM SPONSORS FIIG Geosystem THE SCIENCE OF WHERE Australian Government



Brisbane, Australia 6-10 April

Concept: IMU reference point

Reference point of the Inertial Measurement Unit (IMU) → 3D coordinate transformation by using known points

Brisbane, Australia 6-10 April

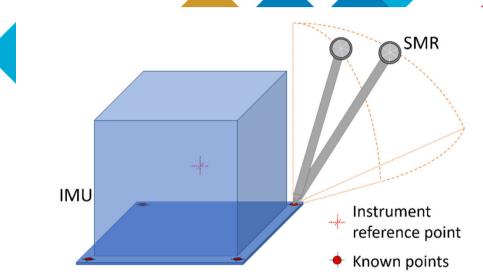
FIG

spatia

Council of Austra

Concept: IMU reference point

Concept 1

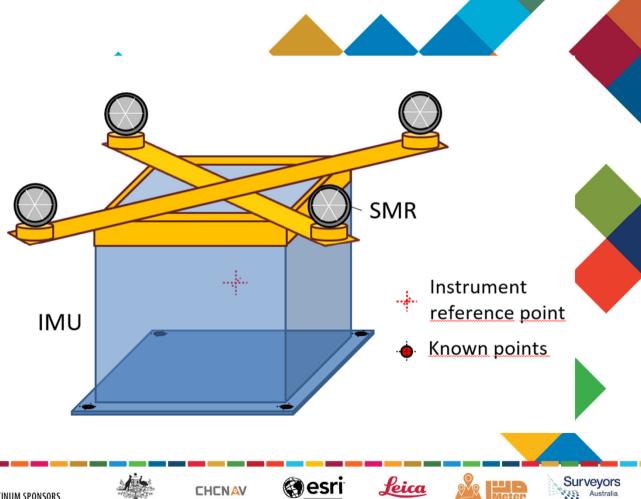

- Idea: SMR is located on a sphere's surface
 → sphere center represents the known point
- MonteCarlo Simulation: Requierements concerning
 - Number of points

WORKING

- Reflector type / accuracy

	Narrow sphere segment			Middle-sized sphere segment		
	20 points	10 points	6 points	10 points	6 points	4 points
SMR ($\sigma = 0,2 \text{ mm}$)	21.8 mm	23.1 mm	30.3 mm	2.5 mm	2.9 mm	3.8 mm
Mini prism ($\sigma = 1 \text{ mm}$)	36.9 mm	38.7 mm	49.2 mm	4.0 mm	4.5 mm	6.0 mm
ANISED BY FIG Geospatial Council of Australia		PLATINUM SPONSO	RS Australian Government		THE SCIENCE OF WHERE	eica & WEP

AND Locate25



Brisbane, Australia 6-10 April

Concept: IMU reference point

Concept 2:

- Design of a attachable frame with 4 spherical mounted reflectors (SMR) \rightarrow calibrated with respect to the instrument reference point
- Advantage: extended plane
 - \rightarrow less prone to outliers
 - \rightarrow only four measurement points

PLATINUM SPONSORS

Surveyors Australia