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SUMMARY  

 

The paper focuses on applying two approaches to Msplit estimation in deformation analysis. 

The methods under consideration are the squared Msplit estimation (SMS), which assumes the 

normality of the observation errors, and the absolute Msplit estimation (AMS), which is based 

on L1 norm condition. The main aim of the paper is to investigate such estimation types in the 

context of vertical displacement analysis with application of either of two models, namely the 

univariate and multivariate models. The Crude Monte Carlo simulations are the basis for 

obtaining estimation accuracies (both root-mean-square deviation, RMSD, and standard 

deviation, SD) and empirical systematic biases, additionally. The results are obtained for 

several different variants of point displacements. Here, it should be noted that accuracy of 

Msplit estimates might depend on the values of such displacements. Generally, the univariate 

model in Msplit estimation gives better accuracy if there are no gross errors in observation set. 

Considering such a model, one can say that SDs are lower for both SMS and AMS estimates. 

It is especially vivid for small displacements. This is very important from the practical point 

of view since small SDs result in smaller RMSDs. On the other hand, the multivariate model 

in Msplit estimation might yield smaller systematic biases; however, smaller biases not always 

result in better accuracy. The variants which contain outliers show significant differences 

between applications of the univariate or multivariate models. One can say that these two 

approaches simply supplement each other. Generally, the outcomes confirm that the choice of 

the model in Msplit estimation is important in deformation analysis because the appropriate 

approach allows to obtain superior accuracy. It is also confirmed that the accuracies and 

empirical biases of both Msplit estimates depend not only on occurrence of gross errors in 

observation set but also on the values of the point displacements. The application of the 

univariate model is especially advisable when such displacements are relatively small. 

Finally, it is also noteworthy that AMS estimates give generally better results than SMS 

estimates. 
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1. INTRODUCTION 

 

Deformation analysis is an important task in surveying. Complexity of this problem causes 

development of different approaches to deformation analysis. One of the newest, still 

developing approach to displacement analysis is Msplit(q) estimation (e.g. Duchnowski and 

Wiśniewski 2011, 2014; Zienkiewicz 2015; Zienkiewicz and Baryła 2015). The assumption of 

such a method is that an observation set is unrecognized mixture of realizations of different q 

random variables (Wiśniewski 2009, 2010). Each observation might be assigned to q 

competitive functional models. The knowledge and experience of analyst and/or particular 

estimation problem are the basis of assuming number of competitive models (Zienkiewicz 

2020).  

The most common case of Msplit(q) estimation is Msplit estimation which concerns two 

competitive functional models, hence two competitive parameters or parameter vectors. In the 

case of vertical displacement analysis, observation set might be a mixture of observations 

from two different measurement epochs. Then Msplit estimation allows us to obtain parameters 

from these two epochs in automatic way; such method does not require to separate 

observations from different epochs. The paper focuses on applying two approaches to Msplit 

estimation in vertical deformation analysis. The first method under consideration is the 

squared Msplit estimation (SMS), which assumes the normality of the observation errors 

(Wiśniewski 2009, 2010). The second one is the absolute Msplit estimation (AMS), which is 

based on L1 norm condition (Wyszkowska and Duchnowski 2019, 2020). Up to now, the 

multivariate model of Msplit estimation was usually considered in deformation analysis. The 

main aim of the paper is to investigate both approaches to Msplit estimation in the context of 

chosen levelling network with application of mentioned the multivariate model and also the 

univariate model. The paper is focused on the estimation accuracies of vertical point 

displacements (both root-mean-square deviation, RMSD, and standard deviation, SD) and the 

empirical systematic biases, additionally. All empirical analyses are based on Crude Monte 

Carlo simulations. 

 

2. THEORETICAL FOUNDATIONS 

 

The conventional functional model in Msplit estimation can be split into two competitive models 

(Wiśniewski 2009): 

 

split
(1) (1) (1) (1)

(2) (2) (2) (2)

=
= + = +

+ = + 
= + = +

y θ v AX v
y θ v AX v

y θ v AX v
  (1) 

Univariate and Multivariate Models in Msplit Estimation in the Context of Vertical Deformation Analysis (10517)

Patrycja Wyszkowska (Poland)

FIG Working Week 2020

Smart surveyors for land and water management

Amsterdam, the Netherlands, 10–14 May 2020



 

where:  y – vector of observations, θ – vector of location parameters, v – vector of 

measurement errors, A – matrix of coefficients, X – vector of parameters. The split of the 

functional model concerns the same observation set y. Generally, the observation set in Msplit 

estimation is an unknown mixture of realizations of two random variables which differ from 

one another at least in the location parameters. The assignment of particular observation to a 

respective parameter version is automatic during iterative adjustment. In other words, there is 

no prior information about the division of the observations into two aggregations.  

The optimization problem of Msplit estimation is written as minimization of the objective 

function (1) (2)( , ) X X  (Wiśniewski, 2009; 2010): 

 
(1) (2)

(1) (2) (1) (1) (2) (2) (1) (2)
,

1

( , ) ( , ) ( , ) min
n

i i i i

i

v v v v  
=

= =
X X

X X   (2) 

where: ρ – arbitrary function which defines the objective function. The influence functions  

(1) (2)(1) ( ),v v  and 
(1) (2)(2) ( ),v v , weight functions 

(1) (2)(1) ( ),v vw  and 
(1) (2)(2) ( ),v vw  are as follows 

(e.g., Wiśniewski, 2009): 

 

(1) (1) (2) (2) (1) (2) (1) (1) (2)

(1) (2)

(1) (1)

(1) (1) (2) (2) (1) (2) (2) (1) (2)

(1) (2)

(2) (2)

(1) (2) (1) (2)

(2) (1) (1) (2)

( , ) ( , ) ( , )
( )

( , ) ( , ) ( , )
( )

, ( , )

, ( , )

i i i i i i
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i i

i i

v v v v v v
v v

v v

v v v v v v
v v

v v

v v

v v

  


  






 
= =

 

 
= =

 

 (3) 

 (1) (2) (1) (2)

(1) (2) (1) (2)

(1) (2)

(1) (2)

(1) (2)

( ) ( )
( ) ( )

, ,
, ,

2 2

v v v v
v v v vw w

v v

 
= =  (4) 

The first approach to Msplit estimation is the squared Msplit estimation (SMS), which assumes 

the normality of the observation errors (Wiśniewski 2009, 2010). The objective function of 

SMS estimation is defined as (Wiśniewski 2009):  

 2 2

(1) (2) (1) (1) (2) (2) (1) (2) (1) (2)

1 1

( , ) ( , ) ( , )
n n

i i i i i i

i i

v v v v v v  
= =

= = X X  (5) 

The respective influence functions and weight functions have the following forms: 

  
2 2

(1) (1) (2) (1) (2) (2) (1) (2) (1) (2)( , ) 2 ( , ) 2v v v v v v v v = =  (6) 

 
(1) (2) (1) (2)2 2

(1) (2) (2) (1) (2) (1)

(1) (2)

(1) (2)

(1) (2)

( , ) ( , )
( ) ( )

2 2
, ,

v v v v
w v v v w v v v

v v

 
= = = =  (7) 

Msplit estimation uses an iterative process based on the Newton process (Wiśniewski 2009). In 

the case of SMS method the starting point of the iterative process 
0

X̂  is usually the least 

squares estimate (LS), namely ˆ
LSX  (Wiśniewski 2009, 2010). However, that method might 

have different starting points like (Wyszkowska and Duchnowski 2020): 

 
0ˆ ˆ

LS= +X X Δ  (8) 
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where: Δ – vector of assumed positive values. Generally, the iterative process for SMS 

estimation can be written as follows (e.g., Wiśniewski 2009; Wyszkowska and Duchnowski 

2019): 

 
( ) ( )

( ) ( )

1
1 1 1 1 1 1

(1) (1) (1) (1) (1) (1) (2) (1) (1) (2)

1
1 1 1 1

(2) (2) (2) (2) (2) (1) (2) (2) (1) (2)

, ,

, ,

j j j j j j j j

j j j j j j j j

d

d

−
− − − − − −

−
− − − −

 = + = −
 

 = + = −
 

X X X X H X X g X X

X X X X H X X g X X

 (9) 

where: dX – increment to parameter, H – Hessian matrix, g – gradient, where: 

 

( ) ( )

( ) ( )

( )
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
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  (10) 

The iterative process is finished for such j = k, for which both gradients equals zero and hence 
1

(1) (1) (1)
ˆ = ,k k−=X X X

1

(2) (2) (2)
ˆ = k k−=X X X  or at least both gradients are close enough to zero and 

(1)

kd X  and (2)

kd X , where ε – assumed small positive number.  

The second approach to Msplit estimation is the absolute Msplit estimation (AMS estimation) 

(Wyszkowska and Duchnowski 2019) which is based on L1 norm condition (e.g., Marshall 

and Bethel 1996; Baselga and García-Asenjo 2008). The objective function of AMS 

estimation is described in the following form: 

 (1) (2) (1) (1) (2) (2) (1) (2) (1) (2)

1 1

( , ) ( , ) ( , )
n n

i i i i i i

i i

v v v v v v  
= =

= = X X  (11) 

The respective influence functions and weight functions are following: 

 
(2) (1) (1) (2)

(1) (1) (2) (2) (1) (2)
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for 0 for 0
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 

 −  −  
= = 

   

   (12) 

 

(2) (1)

(1) (2)

(1) (2)

(1) (1) (2) (2) (1) (2)

(2) (1)

(1) (2)

(1) (2)

for 0 for 0
2 2

, ,

for 0 for 0

( ) ( )

2 2

w v v w

v v
v v

v v

v v
v

v

v v

v
v

 
−  − 



=

 
 
 
 
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

=



 (13) 

The iterative process of AMS estimation is different from this one of SMS method because of 

the lack of mutual cross-weighting (Wyszkowska and Duchnowski 2019). Another difference 

Univariate and Multivariate Models in Msplit Estimation in the Context of Vertical Deformation Analysis (10517)

Patrycja Wyszkowska (Poland)

FIG Working Week 2020

Smart surveyors for land and water management

Amsterdam, the Netherlands, 10–14 May 2020



 

for AMS estimation is that such a method requires two different starting points 
0

(1)X̂  and 
0

(2)X̂  

(or more generally q starting points for q competitive functional models). This is necessary 

since assumption of the same two starting points for the both parameter vectors causes the 

failure at starting an iterative process. The basic solution of the starting points for AMS 

estimation is as follows (Wyszkowska and Duchnowski 2019, 2020): 

 

 

0

(1)

0

(2)

ˆ ˆ

ˆ ˆ

LS

LS

= +

= −

X X Δ

X X Δ
 (14) 

 

The iterative process of AMS estimation may be described as (Wyszkowska and Duchnowski 

2019, 2020): 
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where: 
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where: 
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  (17) 

are modifications of weight functions from Eq. (13), d – small assumed positive constant (e.g. 

d = 0.001). These modifications of weight functions are necessary because of possible 

singularity resulting from the weight functions of Eq. (13) which are not defined for 
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measurement errors equal to zero. The condition of ending iterative process of AMS 

estimation is the same as for SMS estimation. 

 

3. EMPIRICAL TESTS 

 

The empirical tests are based on the following simulated levelling network (Fig. 1). Such a 

network consists of two reference points P1, P2 and three object points A, B, C. All height 

differences hi are measured at two epochs. 

 

 

Fig. 1. Simulated levelling network 

 

In the case of Msplit estimation in vertical displacement analysis, observation set might be a 

mixture of observations from two different measurement epochs. In this paper one applies 

either of two models, namely the univariate or multivariate models. In the case of the 

multivariate model, we have following matrix of coefficients A, vector of observations y, 

vectors of parameters X(1), X(2) and difference of parameters ΔX: 

 

1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1

0 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1

T
− − 

 
= − −
 
  

A  (18) 

 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

T
I II I II I II I II I II I II I II I IIh h h h h h h h h h h h h h h h =  y  (19) 
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 (21) 

The univariate model is not commonly used in the context of Msplit estimation in vertical 

displacement analysis. For that model we have following matrices of coefficients AA, AB, AC 

for object points A, B, C, vectors of observations yA, yB, yC, matrices of weights PA, PB, PC 

and then parameters XA(1), XB(1), XC(1) and XA(2), XB(2), XC(2): 

 

 

 
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where: 
1
,PH  

2PH  – heights of reference points P1 and P2, H
I – height at the first measurement 

epoch, HII – height at the second measurement epoch. The vertical displacements of object 

points A, B, C can be computed by following formula: 

 

(2) (1)

(2) (1)

(2) (1)

Δ

Δ

Δ

II I

A A A A A A

II I

B B B B B B

II I
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X X X H H H

X X X H H H

X X X H H H

= − = − = 

= − = − = 

= − = − = 

 (26) 

where: ΔX – difference of parameters, ΔH – vertical point displacement.  

In this paper empirical tests are executed in Mathcad 15.0 on the basis of Crude Monte Carlo 

(MC) simulations, which are applied in solving many geodetic or surveying issues (e.g. Xu 

2005; Duchnowski, Wiśniewski 2014; Wyszkowska 2017). In these tests there is an 

assumption that all height differences are independent and their errors have normal 

distributions 2(0, )iv N  , where standard deviation 1mm. =  We carry out 1000 

simulations for each empirical test. These tests present the accuracies of Msplit estimates, 

namely both root-mean-square deviation (RMSD) and empirical standard deviation (SD) and 

empirical systematic biases of Msplit estimates (e.g., Duchnowski, Wiśniewski 2014, 2017):  

 
( )

2

1

ˆRMSD( )

ˆ MC

i
n

i

X
X

n

X

=

=
−

  (27) 

 
( )

2

1

ˆSD( )

ˆ MC MC

i
n

i

X X
X

n=

=
−

  (28) 

 ˆBias( ) MCX X X= −  (29) 

where: ˆ MC

iX  – estimated value at the ith Monte Carlo simulation, 
MCX  – mean value of the 

parameter from Monte Carlo simulations, n – number of simulations, X – theoretical value of 

the estimated parameter. One should mention about the starting points in our empirical tests in 

iterative processes of both types of Msplit estimations. For SMS estimation, 
0

(1)
ˆ

LS=X X  is the 

most often used starting point; however, such a starting point might lead to wrong solutions in 

the multivariate model (Wyszkowska and Duchnowski 2019, 2020). Hence, in this paper  
0

(1)
ˆ 10 mmLS= +X X  for SMS estimation and 

0

(1)
ˆ 10 mmLS= −X X  and 

0

(2)
ˆ 10 mmLS= +X X  for 

AMS estimation. Another noteworthy issue is that both iterative processes end when 

(1) 0.001 mmkd X  and (2) 0.001 mmkd X . 
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Without loss of generality, one can assume that 
1 1

I II 0 mmP PH H= = and 
2 2

I II 0 mmP PH H= =  at 

both measurement epochs; in other words the reference points are stable. In the case of the 

object points, we assume that I 0 mm,AH =  I 0 mm,BH = I 0 mmCH =  at the first measurement 

epoch. Additionally, let II

AH  vary within interval [0 mm, 50 mm]  and let us analyse some 

variants of different values of II ,BH and II

CH  and hence different magnitudes of the vertical 

displacements ΔHB, ΔHC. Additionally, these variants differ from each other in the fact that 

the observation set may contain one gross error equal to 5 mm which affects II

1h . 

 

3.1 Variant I for II
= 0 mm,

B
H

II
= 0 mm

C
H  

 

First, let us analyse the variant with zero magnitude of the vertical displacements of the object 

points B and C. Fig. 2 presents RMSDs, SDs and biases obtained for Msplit estimates.  

 

 
Fig. 2. RMSDs, SDs and biases of point displacements for different values of ΔHA; where 

ΔHB = 0 mm, ΔHC = 0 mm (Variant I) 

 

For growing ΔHA all results concerning the object point A are similar to each other. However, 

if the magnitude of ΔHA are quite small, then there are some disturbances for ( )ˆRMSD AH , 

( )ˆSD AH  and ( )ˆBias AH . The probable cause is that there might be some problems with 
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assigning observations to the appropriate measurement epochs when the parameter values are 

close to each other at both epochs. Let us consider the object points B and C. RMSDs are 

better for AMS estimation and these results are similar to one another for the univariate and 

multivariate models. What is more, SDs for the univariate model are much smaller than 

RMSDs. However, RMSDs and SDs of the multivariate model are similar to one another. 

Additionally, there are noticeable discrepancies of biases between both models considered; 

superior values of biases are obtained for the multivariate model. Note that in the context of 

such a model applied in SMS estimation, ΔHA influences the values of ( )ˆBias CH  and the 

smallest biases are acquired for ΔHA approximate to 30 mm. 

 

3.2 Variant II for II
= 0 mm,

B
H

II
= 0 mm

C
H  and II

1
+ 5 mmh  

 

In comparison to Variant I, in Variant II II

1h  is affected by gross error equal to 5 mm. Fig. 3 

shows respective RMSDs, SDs and biases of point displacements for different values of ΔHA.  

 

 
Fig. 3. RMSDs, SDs and biases of point displacements for different values of ΔHA; where 

ΔHB = 0 mm, ΔHC = 0 mm and II

1 5 mmh +  (Variant II) 

 

Generally, the superior results of RMSDs and SDs are obtained for the univariate model. The 

exceptions are ( )ˆRMSD AH  for AMS method for 20 mmAH   and ( )ˆRMSD BH  for 
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SMS method. Another interesting issue is that AMS estimation gives much better RMSDs 

than SMS estimation, which is especially vivid for ˆ
BH  for the univariate model. Also, such 

a model gives smaller SDs. Moreover, the shapes of biases for object points A and B are close 

to the shapes of respective RMSDs. What is more, the results presented here show that both 

Msplit estimates of the displacements ΔHA and ΔHB are strongly influenced by gross error. 

Only AMS estimation for the univariate model gives quite similar results for ˆ
BH  to these 

ones in Variant I. It is also noteworthy that the most affected estimates are these ones which 

concern the points which are the closest to the outlier, namely ˆ
AH .  

 

3.3 Variant III for II
= 20 mm,

B
H

II
= 50 mm

C
H  

 

Let us assume other values of the heights of the object points B and C at second measurement 

epoch and hence different magnitude of the vertical displacements. The respective RMSDs, 

SDs and biases are presented in Fig. 4.  

 

 
Fig. 4. RMSDs, SDs and biases of point displacements for different values of ΔHA; where 

ΔHB = 20 mm, ΔHC = 50 mm (Variant III) 

 

The accuracies and the biases of ˆ
AH  achieve lower values for both SMS and AMS estimates 

for relatively small ΔHA. Then ( )ˆRMSD AH  and ( )ˆSD AH  are better for the univariate 
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model whereas ( )ˆBias AH  for the multivariate model. However, the results for all estimates 

considered are close to each other for bigger ΔHA. It is very similar situation to that in 

Variant I. The estimate accuracy of the rest object point displacements are close to 1 mm and 

to each other for all ΔHA considered. Furthermore ( )ˆBias BH  and ( )ˆBias CH  are 

neglectable. Generally, almost always the parameters are similar to each other for both 

approaches to Msplit estimations and for both models considered. Considering Variants I and 

III, one can say that the accuracy and empirical systematic bias of Msplit estimates depend on 

the point displacements for the univariate model as well as for the multivariate model. 

 

3.4 Variant IV for II
= 20 mm,

B
H

II
= 50 mm

C
H  and II

1
+ 5 mmh  

 

In last variant considered here the vertical displacements of the object points B and C are the 

same as in Variant III and additionally the observation II

1h  is affected by a gross error of 

magnitude 5 mm. Fig. 5 shows RMSDs, SDs and biases, respectively.  

 

 
Fig. 5. RMSDs, SDs and biases of point displacements for different values of ΔHA; where 

ΔHB = 20 mm, ΔHC = 50 mm and II

1 5 mmh +  (Variant IV) 

 

Considering ( )ˆRMSD AH , there are visible discrepancies between models used, especially 

for rather small values of ΔHA. For growing values of ΔHA, the differences between 
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( )ˆRMSD AH which are obtained for different models are very small. In the context of the 

univariate model ( )ˆRMSD AH  are superior for AMS estimation for ΔHA > ΔHB. 

( )ˆRMSD AH  for AMS estimation of the multivariate model are usually better than for SMS 

estimation. The exceptions are results obtained for ΔHA close to ΔHB. Then ( )ˆRMSD AH  for 

AMS estimates are significantly bigger. That results from the coincidence between ΔHA and 

ΔHB. In the case of ( )ˆSD AH  such a coincidence between ΔHA and ΔHB is also noticeable, 

even for the univariate model. What is more, the values of ( )ˆRMSD BH , ( )ˆRMSD CH  as 

well as ( )ˆSD BH , ( )ˆSD CH  are close to each other for all considered estimates. Note that 

the biggest biases are obtained for ˆ
AH , which results from the location of the outlier. Such 

biases confirm conclusions from the analysis of RMSDs. For the object points B and C, the 

biases are neglectable for AMS estimates for both models considered. However, in the case of 

the object point B there are some discrepancies between models applied in SMS estimation. 

Variants II and IV confirm that occurrence of gross error in observation set might influence 

the accuracy and empirical systematic bias of Msplit estimates for the univariate and 

multivariate models, especially the estimates of these object points which are closest to the 

outlier. 

 

4. CONCLUSIONS 

 

The paper presents an investigation of the univariate and multivariate models applied in 

deformation analysis based on two approaches to Msplit estimation, namely the squared Msplit 

estimation and the absolute Msplit estimation. The results are obtained for four different 

variants.  The empirical tests confirm that the accuracy of Msplit estimates might depend on the 

values of the point displacements. Generally, if there is no gross error in the observation set, 

the univariate model in Msplit estimation gives better accuracy. It is especially vivid for 

displacements which are close to 0 mm. This is very important from the practical point of 

view since small SDs result in smaller RMSDs. Thus, the application of the univariate model 

is especially advisable when such displacements are relatively small. On the other hand, 

systematic biases are smaller for the multivariate model. However, smaller biases not always 

result in better accuracy. When the observation set contains an outlier, there are visible 

significant differences between applications of the univariate or multivariate models. One can 

say that these two approaches simply supplement each other. Generally, the choice of the 

appropriate model considered in Msplit estimation allows to obtain superior accuracy. The 

outcomes of executed empirical tests confirm that the accuracies (both RMSDs and SDs) and 

also empirical biases of both approaches to Msplit estimates depend not only on the occurrence 

of gross errors in the observation set but also on the values of the point displacements. 

Finally, one can conclude that AMS method gives generally results which are less sensitive to 

gross error than SMS method does. 
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