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SUMMARY  

 

Considering a levelling network, which is established for vertical displacement analysis, we 

usually analyse several object points and a few reference points. The natural approach in such 

a case is to apply the multivariate functional models where parameter vector consists of the 

heights of the network points. However, some estimation methods, for example some variants 

of R-estimation, require another approach which is generally based on the univariate model. 

In such a case every object point is analysed separately from the others. The approach based 

on the univariate functional model can also be applied to the other estimation methods. Here, 

the following methods are considered: the least squares method (LSE), the Huber method 

(HE, the example of robust M-estimation), the Hodges-Lehmann weighted estimation 

(HLWE, the example of R-estimation) and two variants of Msplit estimation, namely the 

squared Msplit estimation (SMSE) and the absolute Msplit estimation (AMSE). The analysis is 

based on an example levelling network and Crude Monte Carlo simulations (MC). For LSE 

and HE both types of the functional model are applied. For the rest of the methods only the 

univariate model is used. Since some methods are regarded as robust against outliers one can 

consider variant without outliers as well as several variants with outlying observations. The 

paper focuses on the accuracy of the estimations in question and how such an accuracy can be 

affected by different outliers. To investigate better how outlying observations might influence 

the estimates, empirical influence functions (EIF) are also determined. Generally, the analysis 

based on the univariate model is more sensitive to the location of outlier; the estimation 

results depend also on the point location, namely the network structure. As for the estimation 

accuracy, the multivariate model seems a better choice; however, the results of the univariate 

approach are at least comparable in some variants analysed. The conclusions resulting from 

the analysis of EIFs obtained are more varied. In many variants the univariate approach yields 

better results, namely results that are less sensitive to the growing outlier. It is also interesting 

the AMS estimation usually predominates over SMS estimation, and in many cases, it seems 

to be the best solution overall. Summing up, the univariate approach to vertical displacement 

analysis can be an alternative or a supplementation to the more traditional approach based on 

multivariate functional models.
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1. INTRODUCTION AND MOTIVATION 

 

Deformation analysis is one of the most important tasks of surveying engineering. Generally, it 

is a very complex problem, hence several different approaches, measurement techniques and 

computation methods were developed (e.g., Caspary 2000; Wiśniewski 2009; Hekimoglu et al. 

2010; Duchnowski 2010; Amiri-Simkooei et al. 2017; Nowel 2019). Usually the choice of the 

computation method type depends on measurement technique, network structure and type of 

the displacement analyzed. Considering a levelling network, which is established for vertical 

displacement analysis, we usually analyze several object points and a few reference points. The 

natural approach in such a case is to apply the multivariate functional models where parameter 

vector consists of the heights of the network points. In such a case the network is analyzed a 

whole. Another option is to analyze each point separately from the others, which leads to 

application of univariate model with only one parameter, namely the height of the point which 

displacement is analyzed. In such a case one tries to detect and assess vertical displacement of 

a single network point of the basis on several chosen observations. Such an approach leads to 

limitation of the number of observations which are applied for a single point analysis. The 

approach presented here is a natural one for the Hodges-Lehmann estimators (the basic  

R-estimators). In such a case the displacement is estimated on the base of at least two sets of 

the computed height of the point. These heights are computed in independent ways by applying 

the raw observations from at least two epochs respectively (Duchnowski 2010; 2013). Note that 

in the approach in question, one can increase the number of observations applied and hence 

increase the reliability and accuracy of the estimates (Wyszkowska and Duchnowski 2018). 

The application of the univariate model has some advantages over the multivariate models, for 

example, it is advisable in detecting outliers which might occur and disturb the estimation 

process (e.g., Hekimoglu et al. 2014). Note that if an observation set includes some outliers then 

deformation analysis becomes much more complex, and sometimes it is just impossible to 

separate gross errors from displacements (see, e.g., Shaorong 1990; Duchnowski 2011). The 

main goal of the paper is to compare multivariate model versus univariate model applied in 

deformation analysis. The several following estimators, which are applied in deformation 

analysis, are considered: the least squares estimation (LS), an example of robust M-estimation 

– the Huber method (H), an example of R-estimation – the Hodges-Lehman weighted 

estimation (HLW), and two variants of Msplit estimation: the squared Msplit estimation (SMS) 

and the absolute Msplit estimation (AMS). For the first two methods both multivariate and 

univariate models are applied, for the rest methods only the univariate model is used. The 

comparison is performed for the simulated leveling network.  
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2. MODELS AND METHODS APPLIED 

 

Consider the following classical functional model of geodetic observations  

 = +y AX v   (1) 

where: 
1

[ , , ]
T

n
y y=y  is an observation vector; 

1
[ , , ]

T

r
X X=X  is parameter vector; 

1
[ , , ]

T

n
v v=v  is vector of random errors, and 

,n r
RA  is a known coefficient matrix. Such 

models are the basis for deformation analysis, namely for determining the shifts 

( , )k l l k
 = −X X X  between the epochs l and k (for example, the changes of the point coordinates 

between such epochs). Without loss of generality, we can consider two epochs thus 1k =  and 

2l = . Let us also assume the following form of the covariance matrix of the observations 

 
2 1

0
−=YC P   (2) 

where: 
,n r

RP is a weight matrix of observations; 
2

0  is a variance coefficient. 

Deformation analysis can be based on several different estimation methods. First, we 

consider the classical LS estimator in the following form: 

 ( )
1

ˆ T T

LS

−

=X A PA A Py  (3) 

Such an estimator is the basis for the Huber estimate for which 

 ( )
1

ˆ T T

H

−

=X A PA A Py  (4) 

where: 
,n r

RP  is an equivalent weight matrix. Such a matrix is computed in an iterative 

process. For each iterative step we can compute , ,
ˆ( )i i i i iw v= P P , where ˆ( )iw v  is the weight 

function in the following form 
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where: a – positive constant (usually assumed between 1.5 and 3.5). Note that the solution 

presented here is an iterative process which ends when the parameter vector is not changing 

between the iteration steps anymore (or the change is smaller than the assumed tolerance). 

The Hodges-Lehman weighted estimates applied the test statistic introduced in 

(Duchnowski 2013), and which leads to the following direct estimate of the shift 

 ( )ˆ ˆ
HLW

HLW

i jmedw y x =  = −X  (6) 

where: medw is a weighted median operator. Considering application of this estimate in vertical 

displacement analysis, yi and xj are heights of the same object point at two different 

measurement epochs which are computed in independent ways by applying the heights of the 

reference points and the raw observation respectively (Duchnowski 2013; for other options see, 

Duchnowski 2010). 

The last two estimates belong to the class of Msplit estimators. They accept the split 

functional models (Wiśniewski 2009) 

 
(1) (1)

(2) (2)
  

= +
= + 
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y AX v

y AX v
   (7) 
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The Msplit estimates can be computed in the iterative process which can be described in the 

following way (Wiśniewski 2009, Wiśniewski et al. 2019) 

 (1) (1) (1) (2) (2) (2) (1) (2)
ˆ ˆˆ ˆ ˆ ˆ( , ) ( , )= =X D v v y X D v v y   (8) 

where 
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The weight matrices are as follows 
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and they are computed by applying respective weight functions 
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where (1)  and (2)  are respective influence functions (see, Wiśniewski 2009, Wiśniewski  

et al. 2019). Of course, the whole process presented is iterative and it ends when the respective 

gradients of the objective functions are equal to zero. Note that different variants of Msplit 

estimators differ from each other in the objective function, hence also in the influence and 

weight functions. Thus, for the squared Msplit estimation (Wiśniewski 2009) 

 
2 2 2 2
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and for the absolute Msplit estimation (Wyszkowska and Duchnowski 2019) 
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Detailed description of the iterative process of Msplit estimation can be found in (e.g., 

Wiśniewski 2009; Wiśniewski et al. 2019; Wyszkowska and Duchnowski 2020). 

 

3. NUMERICAL TESTS 

  

Let us now test the methods which are mentioned in the previous section in the case of an 

example simulated levelling network. First, the accuracy of estimates in question will be 

investigated. The tests will be done in an empirical way based on the Monte Carlo simulations. 
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Next the sensitivity to gross errors will be tested. In this context, empirical influence functions 

will be used. 

 

3.1 Simulated network 

 

Let us consider the leveling network which are presented in Fig. 1. 

 

 
 

Fig. 1 Simulated levelling network 

 

It is assumed that the reference points, namely A and B, are stable and 

0.000 , 0.000A BH m H m= =  at both measurement epochs. The assumed accuracy of the 

observations, namely the height differences between the network point hi, is equal to 1 mm. 

Considering the displacement analysis with the multivariate model, the height differences are 

parameters in the model of Eq. (1) and they are estimated by adjustment of the epochs separately 

as for LS and H methods, see Eqs. (3 and 4). In the Huber method, the steering parameter 2a =

. In the case of the univariate model we investigate only displacements of the points 104, 105 

and 107. Because of the network structure, the analysis for the rest of the object points would 

give similar results. Thus, one considers two sets of heights differences computed for each 

object point under investigation and for each epoch in the following way 

 

104 13 105 10 107 15 20

104 12 5 105 7 9 107 10 19

104 15 16 105 15 17 1

104 8 105 13 11

104 10 11

104 7 4

for point 104 for point 105 for point 107

A B A

A B B

A A

B A

B

B

H H h H H h H H h h

H H h h H H h h H H h h

H H h h H H h h H

H H h H H h h

H H h h

H H h h

= + = + = + +

= + + = + + = + +

= + − = + −

= + = + −

= + +

= + +

07 8 18BH h h= + +
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Such computed heights are regarded as observations and used to estimate the point heights at 

measurement epochs and hence height differences (vertical displacements between the epochs). 

Of course, all such observations should have computed weights which create the new weight 

matrix. Such weights are computed by applying the variances obtained by application of the 

variances of the raw observations and the law of variance propagation.  Thus, within the model 

of Eq. (1) we have 104 105 1076, 5, 3 and 1.n n n r= = = =  Considering Msplit estimation, one 

should assume the starting point of the iterative process. Here, we assume ˆ 0.01LS m+X  for 

SMS estimation and two starting points, namely ˆ 0.01LS m−X  and ˆ 0.01LS m+X  as for AMS 

estimation (see, Wyszkowska and Duchnowski 2019, 2020). 

 

3.2 Accuracy analysis 

  

Assessment of the accuracy of the estimates under investigation is performed by applying 

Monte Carlo simulations and the root-mean-square deviation (RMSD)  

 
( )

2

,

1

ˆ
ˆRMSD( )

MC
n

k i k

k

i

H H
H

n=

 


−
=   (14) 

where kH  is theoretical assumed displacement of the kth point; ,
ˆ MC

k iH  is an estimate of the 

displacement of the kth point obtained at ith simulation. The number of simulations 1000n = , 

which seems enough in the context of the paper goal. To investigate the problem in a more 

general way we assume two variants of the point displacements: 

 
104 105 105

104 105 105

0.030 , 0.015 , 0.010 ,

0.003 , 0.002 , 0.005 ,

Variant I :

Variant II :

H m H m H m

H m H m H m

 = −  = −  =

 =  =  =
 

The empirical accuracies of all estimators and for the both variants are presented in Table 1. 

Please note that the estimator with application of the multivariate model are marked with the 

additional M and those with the univariate model are marked with U. 

 

Table 1. RMSDs of the displacement estimates (mm) 

Variant Parameter 
Theoretical 

displacement 
LS-M LS-U H-M H-U HLW SMS AMS 

Variant I 

ΔH104 –30 0.66 0.69 0.71 0.70 0.72 0.73 0.79 

ΔH105 –15 0.80 0.88 0.87 0.88 0.96 0.96 1.12 

ΔH107 10 1.00 1.14 1.13 1.17 1.23 1.17 1.27 

Variant II 

ΔH104 3 0.67 0.69 0.73 0.70 0.73 0.98 0.77 

ΔH105 2 0.81 0.90 0.88 0.90 0.95 1.29 0.92 

ΔH107 5 1.02 1.18 1.10 1.18 1.25 1.28 1.25 

 

The results presented in Table 1 are similar to one another in many cases. Generally, LS as well 

as Huber estimates seem more accurate when the multivariate model is applied; however, in the 

case of Huber estimates there are some exceptions. Such a conclusion seems natural 

consequence of the number of observations involved. In the multivariate model, one uses all 
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observations, hence the number of observations is bigger. Considering the methods which use 

only the univariate model, HLWE seems to have the best accuracy. In the case of Msplit 

estimations, SMS estimates are more accurate than AMS estimates for the bigger assumed 

displacements (Variant I). When the displacements are small then the opposite is true.  

Now let us investigate how some deterministic errors would influence the accuracy of the 

estimates. Thus, let some observations at the second measurement epoch be affected by gross 

errors. The outliers are chosen in three versions, the first one considers outlying observation 

which is relatively far from the object points analyzed; the second one, outlier is close to such 

points; the third one, both such outliers occur. The variants considered here as well the empirical 

accuracies obtained are presented in Table 2. 

 

Table 2. RMSDs of the estimates when the observation set is affected by gross errors (mm) 

Variant Parameter 
Theoretical 

displacement 
LS-M LS-U H-M H-U HLW SMS AMS 

Variant I 

with                  

h1
II+5 mm 

ΔH104 –30 0.69 0.69 0.72 0.70 0.73 0.74 0.81 

ΔH105 –15 0.79 0.87 0.85 0.87 0.95 0.92 1.07 

ΔH107 10 0.99 1.12 1.07 1.12 1.21 1.15 1.22 

Variant I 

with                  

h15
II+5 mm 

ΔH104 –30 0.94 0.92 0.77 0.87 0.83 0.80 0.86 

ΔH105 –15 1.13 1.36 0.93 1.36 1.21 1.05 1.18 

ΔH107 10 1.51 2.10 1.21 2.10 1.80 2.81 1.75 

Variant I 

with                   

h1
II+5 mm 

and                 

h15
II+5 mm 

ΔH104 –30 1.08 0.95 0.79 0.89 0.84 0.80 0.84 

ΔH105 –15 1.08 1.32 0.91 1.32 1.17 1.00 1.12 

ΔH107 10 1.54 2.07 1.19 2.07 1.79 2.78 1.77 

Variant II 

with                  

h1
II+5 mm 

ΔH104 3 0.70 0.70 0.73 0.71 0.74 0.96 0.79 

ΔH105 2 0.83 0.91 0.87 0.91 0.97 1.25 0.91 

ΔH107 5 1.02 1.16 1.08 1.16 1.21 1.24 1.21 

Variant II 

with                  

h15
II+5 mm 

ΔH104 3 0.95 0.94 0.76 0.88 0.84 2.11 0.84 

ΔH105 2 1.14 1.34 0.94 1.34 1.19 3.34 1.38 

ΔH107 5 1.44 2.02 1.15 2.02 1.75 3.36 2.61 

Variant II 

with                       

h1
II+5 mm 

and                       

h15
II+5 mm 

ΔH104 3 1.09 0.95 0.80 0.90 0.86 2.14 0.84 

ΔH105 2 1.07 1.32 0.89 1.32 1.19 3.30 1.39 

ΔH107 5 1.45 1.98 1.12 1.98 1.72 3.38 2.67 

  

The results show that the gross errors influence the accuracy of all the estimates tested. The 

impact of the outliers is the smallest when such an observation is far from the object point 
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tested. Note that even LS estimates seem not to be affected by such an outlier. Considering LS 

and H estimates, the application of the multivariate model seems to be the better choice. This 

stems from the higher redundancy of such an observation set. However, for the point 104, the 

application of the univariate model seems advisable. For this point the estimated point 

displacement have better accuracy when such a model is applied, especially in the case of LS 

estimates. This of course stems from the fact that for this point the observation set created for 

the univariate model includes the biggest number of observations. For the rest of the estimates, 

one can note that the accuracy of HLWEs depends on the number of observations in the 

observation set. It increases with growing number of the observations. As for Msplit estimates, 

accuracy of SMS estimates seems very dependent on the magnitude of the point displacements. 

For the bigger simulated displacement such estimates are usually slightly better that AMS 

estimates. For the smaller displacements, the opposite is true. Finally, it seems interesting than 

even the methods which are not regarded as robust seem not affected by a single outlier. This 

might result from a relatively small value of the gross error. To investigate such expression, 

one can perform the computations for the bigger gross error. An example results are presented 

in Table 3. 

 

Table 3. RMSDs of the estimates when the observation set is affected by gross errors (mm) 

Variant Parameter 
Theoretical 

displacement 
LS-M LS-U H-M H-U HLW SMS AMS 

Variant I 

with                  

h1
II+30 mm 

ΔH104 –30 1.22 0.70 0.72 0.70 0.74 0.73 0.79 

ΔH105 –15 0.89 0.90 0.86 0.90 0.97 0.97 1.10 

ΔH107 10 1.05 1.12 1.06 1.12 1.19 1.16 1.21 

Variant I 

with                  

h15
II+30 mm 

ΔH104 –30 4.05 3.83 0.74 0.77 0.85 0.76 0.81 

ΔH105 –15 4.70 6.03 0.89 6.03 1.22 3.92 1.13 

ΔH107 10 6.25 9.99 1.14 9.99 1.84 24.62 28.46 

 

The results show that the bigger gross error influences the estimation results in a much more 

significant way. Note that only the Huber method with application of the multivariate model 

and HLWEs have accuracy which is like the accuracy obtained for smaller gross error, 

respectively. It is also worth noting that both Msplit estimates have failed for the estimation of 

the displacement of the point 107; however, the displacements of the points 104 and 105 are 

estimated with the acceptable accuracy. This shows how gross error might influence such 

estimates in an unexpected way. 

 

 

 

 

 3.3 Sensitivity of the estimate to gross errors 

 

This section focuses on testing sensitivity of the estimates to gross errors. The best way is 

such a context is to apply empirical influence functions, EIFs (e.g., Duchnowski 2011; 
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Duchnowski and Wyszkowska 2020). For the goal of this paper we can apply the following 

form of EIF 

 1 2 2EIF( ) ( , + )nx T= y y g  (15) 

where: nT – a tested estimator, lg  – vectors including gross errors at the respective epoch in 

the form 

 2 2,1 2,

T

k ng x g =  g  (16) 

Thus, one can consider several constant gross errors, 2,ig , and one gross error, kx ,  which values 

increases within the assumed interval. In such a way we can compute many different variants 

of EIFs which differ from each other in locations of gross errors in question. 

Let us consider the variants which are discussed in the previous section. The respective EIFs 

are presented in Figures 2-9. 

 
Fig. 2. EIFs, Variant I with 1x   

 

 
Fig. 3. EIFs, Variant I with 15x   

 

 
Fig. 4. EIFs, Variant I with 1x  and 2,15 5g mm=   
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Fig. 5. EIFs, Variant I with 15x  and 2,1 5g mm=   

 

 
Fig. 6. EIFs, Variant II with 1x   

 

 
Fig. 7. EIFs, Variant II with 15x   

 

 
Fig. 8. EIFs, Variant II with 1x  and 2,15 5g mm=   
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Fig. 9. EIFs, Variant II with 15x  and 2,1 5g mm=   

 

Analysis the EIFs obtained allows us to draw some interesting conclusions concerning the 

sensitivity of the estimate.  LS estimates obtained with application of the univariate model are 

usually less sensitive to the gross errors, especially to the single gross error. The estimates of 

the Huber method are less sensitive when the multivariate model is applied. Note that in the 

case of the univariate model EIFs of the Huber method are the same as the respective EIFs of 

LS estimation as for the points 105 and 107. Thus, one can conclude that the method does not 

identify the outliers. HLWEs seem insensitive to gross errors at all. The EIFs of these estimates 

are very often horizontal lines, thus increasing gross error does not influence the estimation 

process in a more extensive way. The EIFs obtained for SMS and AMS estimates also provide 

valuable information. The results obtained for the cases in which the increasing gross error 

affects the observation 
II

15h  seem especially interesting (Figs. 3, 5, 7, 9). They show that AMS 

estimates are much less sensitive to the gross errors. In many cases considered, such estimates 

are almost insensitive to small or moderate values of the gross error. However, for the biggest 

value of the gross error, the response of SMS and AMS estimates are often similar to each other. 

  

4. CONCLUSIONS 

 

The paper addresses the application of two types of possible functional models in 

deformation analysis. Analysis of network point displacements is usually based on application 

of the multivariate model. However, for some estimates, for example HLWE, the univariate 

model is a natural choice. The empirical tests reveal pros and cons for both models. As for LS 

method and especially the Huber method, the multivariate model seems a better choice. 

Application of the univariate model usually decreases the redundancy of the observation set 

and hence makes the estimates more sensitive to outliers. This is especially important in robust 

M-estimation where sometimes the iterative process cannot start at all, and the outliers stay 

undetected. However, application of the univariate model might be sometimes advisable. This 

concerns cases where outlier in not involved in computing coordinates which are included in 

the observation sets for the application of the univariate model. Then, the estimate of the point 

displacement would be free of the bad influence of outlier. In such a context estimates obtained 

with application of the univariate model can be regarded as a supplementation (or confirmation) 

of the results obtained with the application of the multivariate model. 

Application of the univariate model does not mean the results will be more sensitive to gross 

errors or less accurate. HLWE, which applies the univariate model, has the accuracy which is 

comparable with the accuracy of the estimates based on the multivariate model. Its sensitivity 

to outlier is also high. What is more, such a sensitivity does not depend on the magnitude of the 
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gross errors (in the case of the other estimates such a relation is obvious). Finally, the test show 

that AMS estimation is less sensitive to gross error than SMS estimation, which confirms 

previous conclusions for the multivariate model (Wyszkowska and Duchnowski 2019). 

However, in some cases, SMS are more accurate than AMS estimates, thus, the choice of the 

better Msplit estimate is not so obvious and easy. 
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